This study was supported by NOAA Climate Program Office's Atmospheric Chemistry, Carbon Cycle, and Climate program, grant number NA23OAR4310285

Investigating the role of chemistry on the methane budget in emission-driven CH₄ simulations

Chemistry-Climate Working Group, CESM Workshop 2025 Tuesday, June 10, 2025

Ben Gaubert¹, Amin Mirrezaei², A. Arellano Jr², R. P. Fernandez³, D. Kinnison¹, I. Ortega¹, ¹L. K. Emmons¹, M. Saunois⁴, H. M. Worden¹, A. Saiz-Lopez⁵, K. McKain⁶, Lori Bruhwiler⁶, Youmi Oh⁷, Y. Xu⁸, C. Feng⁸

¹Atmospheric Chemistry Observations Modeling Laboratory (ACOM), NSF NCAR; ²University of Arizona; ³ICB-CONICET, Argentina; ⁴LSCE and Université de Versailles Saint Quentin; ⁵Institute of Physical Chemistry Blas Cabrera, CSIC; ⁶Global Monitoring Laboratory, NOAA, ⁷CIRES, University of Colorado Boulder

Emission-driven methane simulations: emissions-chemistry-climate feedback

 \checkmark Understand the methane budget sources and sinks

- \checkmark Evaluating the impact of chemistry and chemistry
 - changes on the methane growth rate
- ✓ Include chemical feedback
- $\checkmark\,$ include further climate feedback emissions processes
 - (e.g., soil and wetlands response to climate)

Figure 1: A conceptual illustration of the propagation of uncertainty using concentration and emissions-based anchor points

Reconciliate bottom-up and top-down atmospheric budget estimates (OH)

- chemistry-climate model (CCM) prognostic OH have uncertainties of around 20 %
- Uncertainties of 10 % in methyl-chloroform inversions (e.g., global methane budget 2020).
- CCMs tend to overestimate the OH distribution
- Current estimates diverge on the latitudinal and temporal distribution of OH

Fiore AM, et al. 2024

Fiore et al., Climate and Tropospheric Oxidizing Capacity, 2024

"mechanistic global atmospheric chemistry transport models fail to even simulate the partitioning of OH between the Northern and Southern Hemispheres ... which alone warrants further OH studies."

Interpreting contemporary trends in atmospheric methane

Alexander J. Turner^{a,1,2}, Christian Frankenberg^{b,c,1,2}, and Eric A. Kort^{d,1,2}

On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations

O. Stein, M. G. Schultz, I. Bouarar, H. Clark, V. Huijnen, A. Gaudel, M. George, and C. Clerbaux

-30 -20 -10 0 10 20 30 Relative difference (%)

Preindustrial-to-present-day changes in atmospheric carbon monoxide: agreement and gaps between ice archives and global model reconstructions

Xavier Faïn¹, Sophie Szopa², Vaishali Naïk³, Patricia Martinerie¹, David M. Etheridge^{4,5}, Rachael H. Rhodes⁶, Cathy M. Trudinger^{4,5}, Vasilii V. Petrenko⁷, Kévin Fourteau⁸, and Philip Place^{7,a}

"The AerChemMIP model mean is about 20% lower than ice archive datasets at northern high latitudes during the entire 1850–2014 period."

Impact of halogen chemistry and methane emissions in CESM2.2 CAM-chem

Community Earth System Model version 2.2 (CESM2.2) Community Atmosphere Model with chemistry (CAM-chem)

- **1. MOZART TS1.2**
- 2. MOZART TS1.2 with Short-Lived Halogens (SLH) representation (Fernandez et al., in prep, 2025)

CMIP6: Prescribed surface methane concentration from the CMIP6 protocol

Methane surface emission flux from the

GCP2020-Surf: ensemble mean of surface inversions (Saunois et al., 2020)

GCP2020-GOSAT: ensemble mean of GOSAT inversions

CTCH4: CarbonTracker-CH₄-2023 (Oh et al., 2023)

✤ 5-year simulations (January 1st, 2014)

Saunois et al., The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 2020

Oh, Y., et al.,. CarbonTracker CH₄ 2023. NOAA Global Monitoring Laboratory. <u>https://doi.org/10.25925/40JT-QD67</u>, 2023

Impact of halogen chemistry and methane emissions in CESM2.2 CAM-chem

NASA ATom Latitudes > 30°N

Improved OH in winter and spring

O₃ reduction in winter and spring

Impact of halogen chemistry and methane emissions in CESM2.2 CAM-chem

A. Mirrezaei et al, to be submitted, 2025

Methane Chemical loss budget (2017)

A) Tropospheric CH₄ total chemical loss

Methane Chemical loss budget (2017)

A) Tropospheric CH₄ total chemical loss

The CH₄ tropospheric chemical lifetime (OH) increase from 8.82-8.88 to 10.11-10.14 years

Methane Chemical loss budget (2017)

A) Tropospheric CH₄ total chemical loss

Impact of CO emissions (net increase by 180 TgCO yr⁻¹ TS1.2-SLH-CMIP6: 504 TgCH₄ yr⁻¹ TS1.2-SLH-CMIP6-post-CO: 496 TgCH₄ yr⁻¹

TS1.2-SLH-CTCH4: 511 TgCH₄ yr⁻¹ TS1.2-SLH-CTCH4-post-CO: 502 TgCH₄ yr⁻¹

Around 8 to 9 TgCH₄ yr⁻¹ from a change in CO emissions

Revisiting an old conundrum: Tropospheric Ozone burden vs OH

O. Wild et al.: Uncertainty in global O₃ and OH

Table 1. Global tropospheric metrics from previous model studies.

Studies	Number	O ₃ burden	CH ₄ lifetime	References
Early literature studies ACCENT intercomparison HTAP intercomparison ACCMIP intercomparison Observational estimates	33 studies 21 models 12 models 14 models	307 ± 38 Tg 344 ± 39 Tg 328 ± 41 Tg 337 ± 23 Tg 335 ± 20 Tg	9.6 ± 1.4 years 10.2 ± 1.7 years 9.8 ± 1.6 years 11.2 ± 1.3 years	Wild (2007) Stevenson et al. (2006) Fiore et al. (2009) Young et al. (2013), Voulgarakis et al. (2013) Wild (2007). Prather et al. (2012)

Wild et al., Global sensitivity analysis of chemistry-climate model budgets of tropospheric ozone and OH: exploring model diversity, 2020

4049

Community Earth System Model version 2.2 (CESM2.2) Community Atmosphere Model with chemistry (CAM-chem)

MOZART TS1.2 with improved Short-Lived Halogens (SLH) representation (Fernandez et al., in prep, 2025)

CESM: Prescribed surface methane concentration from the CMIP6 protocol
 CESM-CH4: Methane surface emission flux from the CarbonTracker-CH₄-2025 (Oh et al., 2023)

20-year simulations (2003 to 2022)

Oh, Y., et al.,. CarbonTracker CH₄ 2025. NOAA Global Monitoring Laboratory. <u>https://doi.org/10.25925/40JT-QD67</u>, 2023

Trend component

Inter-annual variability component

MOPITT CO: Seasonal and Trend decomposition using Loess (STL)

Summertime underestimation and spring overestimation

- Photochemistry (CO+OH loss)
- Secondary CO source, i.e., Volatile
 Organic Compounds chemistry
- Summertime emissions from fires, biogenic and anthropogenic sources.

Average Seasonal Cycle (2003-2022)

GOSAT CH₄ (2010 to 2022)

NSF HIPPO (2009-2011) and NASA ATom (2016-2018)

KORUS-AQ (2016) and ACCLIP (2022)

 \succ CH₄ chemical loss is well buffered in our improved chemistry

Summary

Updated halogen representation in CESM2.2 impacts:

 \checkmark Net reduction in O₃, OH with most profound impact over the ocean

 \checkmark Result in an increase in CO and CH₄ due to a longer lifetime with respect to OH

Dramatic improvements in CO and CH4 simulations

✓ Evaluated against GOSAT XCH₄, MOPITT XCO, airborne field campaign observations

 \checkmark Latitudinal gradient in biases, southern hemisphere CO/CH₄ overestimation

Enables emission-driven 20 year simulation transient simulations

 \succ CH₄ chemical loss is well buffered in our improved chemistry

gaubert@ucar.edu