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Motivation

3 day Z500 RMSE Skill Score vs Publication Time
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After 4 years of rapid advancement in
accuracy, further advancements in Al
weather modeling have shown diminishing
returns in improving global metrics.

>
AP TPA = UFS-3hbkg (1 deg)
e’ —— NeuralGCM-det (0.7 deg)
‘ = ~—— NeuralGCM-stoch (1.4 deqg)
4 —— UFS-6hbkg (1 deg)

—— Pangu (0.25 deg)
GraphCast (0.25 deg)
SFNO (0.25 deg)

M Vea T Vathalihe

\ / A A
‘,‘: Model goes unstable
\

08 15 22 Oct 08 15 22 Nov
2021-Nov
Source: Slivinski et al. 2024

Experiments with data assimilation and

ensembles have revealed physical inconsistencies

and instabilities that require more engagement
with the data and physics.



Our Framework: CREDIT

What is CREDIT?

An open foundational platform for
developing and deploying Al weather and
Earth system prediction models.

CREDIT enables users to build custom
data and modeling pipelines to load data,
train configurable Al forward models, and
deploy them for real-time forecasting,
hindcasting, or scenario projections.

CREDIT offers both scientifically validated
model configurations and endless
customization for any use case.
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CREDIT Components

Single Step Training

Single Step Transform Post Blocks OEE

Input Data in Dataset Metrics

Al-Friendly
Chunks Update weights
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CREDIT WXFormer v1: Training Data

ERAS hybrid sigma-pressure level data
on 0.28 deg. Gaussian grid (1280 x 640
grid cells)

— 1979-2014 training

— 2014-2017 validation
— 2018-2022 testing

State variables on 16 hybrid-sigma levels
sampled from the 137 ERAS levels
Surface and 500 hPa variables

Forcing

* Integrated solar irradiance at TOA
* Land Sea Mask
* Geopotential at surface

Table 1: Input Variables and Their Units

Type Variable Name Short Name Units Usage

Model level variable Zonal Wind U m-s~! | Prognostic
Model level variable Meridional Wind v m-s~! | Prognostic
Model level variable Air Temperature T K Prognostic
Model level variable Specific Humidity Q kg - kg~! | Prognostic
Single level variable Surface Pressure SP Pa Prognostic
Single level variable 2-Meter Temperature t2m K Prognostic
Single level variable Meridional Wind at 500 hPa V500 m-s~! | Prognostic
Single level variable Zonal Wind at 500 hPa U500 m-s~! | Prognostic
Single level variable Temperature at 500 hPa T500 K Prognostic
Single level variable Geopotential Height at 500 hPa Z500 m Prognostic
Single level variable Specific Humidity at 500 hPa Q500 kg -kg™! | Prognostic

Invariant variable Geopotential at surface Zspe m?.s~2? | Input-only

Invariant variable Land Sea Mask LSM n/a Input-only

Forcing variable Integrated instantaneous solar irradiance I, J-m~? | Input-only




CREDIT WXFormer Model Architecture

Spectral normalization of weights during training
- prevent exploding and vanishing gradients
- improve model stability

(a) WXformer architecture . . © - -
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Global Verification

RMSE and ACC verifications of 006-240 hour forecasts [*]
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Kinetic Energy Spectra

(a-c) Global mean kinetic energy spectrum[*lon 500 hPa, 2019-2022. Pangu only 2020
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[*] Energy spectrum was computed using spherical harmonic transform on each Wavenumber

initialization and forecast lead time, and averaged as mean values.
[**] K=3 and K~>3 regions were estimated based on the 1000-100 km scale wavelength on 45°N and 45°S.

== 6-hr ERA5 = 6-hr IFS 6-hr FuXi == 6-hr WXFormer == 1-hr WXFormer == 6-hr Pangu



Variations by Vertical Level

WXFormer 1 Hour ERAS










Physics Conservation (Work led by Kyle Sha)

Table 1. The variables of interest in this study.

Type Variable Name Units Role
Zonal Wind m-s !
Meridional Wind m-s !
Pressure level Air Temperature K Prognostic, Instantaneous
Specific Total Water® kg kg !

Geopotential height m
Mean Sea Level Pressure Pa
2-Meter Temperature K

Single level
10-Meter Zonal Wind

_,  Prognostic, Instantaneous

m-s
10-Meter Meridional Wind m-s!
Total Precipitation m
Evaporation m
Top-of-atmosphere Net Solar J-m2
Radiation
Outgoing Longwave Radiation J.-m? i ) )
. Surface Net Solar Radiation J-m™2 Diagnostic, Cumulative
Flux farm Surface Net Longwave J-m 2
Radiation
Surface Net Sensible Heat Flux J-m™2
Surface Net Latent Heat Flux J-m™2
Top-of-atmosphere Incident J-m? Input-only, Cumulative
Solar Radiation
Sea-ice Cover n/a Input-only, Instantaneous
Others Geopotential at the Surface m? 572 Input-only, Static
Land-sea Mask n/a Input-only, Static
Soil Type n/a Input-only, Static

* Specific total water is the combination of specific humidity, cloud liquid water content,

and rainwater content.

" Flux form variables are accumulated every 6 hours. Downward flux is positive.

(a) The combination of an Al weather prediction model (e.g., FuXi) and conservation schemes

Window size (7, 7)

Non-negative lobal dry air mass Global moisture Global total
FuXi (b) - cg’u conservation budget conservation atmospheric energy
correclon scheme scheme conservation scheme
(b) The architecture of FuXi
: MLP ratio 4 ;
Input size i Residual
(73, 2, 181, 360) H H ST blocks (2)

Residual | | 1
T

blocks (2)

@ Skip connection with tensor add. ==seessreessennnns
(P) Tensor padding and un-pad. Padded size (224, 448).

Swin-
Transformer
stacks (48)

@ Cube Embedding. Conv3D, kernel size and stride (2, 4, 4), embedded dimension 1536.
@ Down-sampling layer. Conv2D, kernel size (3, 3), stride (2, 2).
[El Up-sampling layer. ConvTranspose2D, kernel size (2, 2), stride (2, 2).

Fully connected layer with tensor reshape. Input size 1536, output size 4x4x77.

Data: ERA5 conservatively regridded to 1 degree

Loss: Latitude-weighted MSE

(c) Residual block

-

Compute
training loss

Save inference
result

Output size
(77,2, 181, 360)

Conv2D, kernel size (3, 3), valid padding.
Group normalization, number of groups 32.

() siLU activation function.

Ingredients for Physics Constraints in Al Weather Prediction

1.Sufficient variables to calculate mass, moisture, and energy budgets

2.Conservation layers that adjust data to conserve mass, moisture, and total
energy across the globe to match initial values with multiplicative scaling
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Forecast Improvements
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Ablation Analysis

SEEPS and RMSE differences of IFS minus FuXi runs, 2020-2021

(a-b) Global dry air mass content comparisons between 1-year forecasts and the original 0.25° ERA5 (a) SEEPS differences | total precipitation (b) RMSE differences | MSLP [hPa]
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Physics-Constrained Case Example
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Graduate Student

Goal: Wants to investigate the effect of changes in
sea surface temperature patterns on snow depth in
the Andes.

With CREDIT: Starts with a pre-trained CREDIT
model, generates ensemble forecasts for 5 years
on one Derecho node in a day and applies ML
winter precipitation type algorithm to partition rain
and snow and estimate snow depth. Adjusts SST
distribution and re-runs ensemble the next day.

Without CREDIT: Grad student spends a month
generating MPAS ensemble runs and then another

month writing code to calculate p-type and parse
through the data.

CREDIT User Stories

Risk Modeler

Goal: Simulate the compound risk of heat waves with
deadly wet bulb globe temperatures following tropical
cyclones that reduce electricity and A/C.

With CREDIT: Run 50 initializations of CAMulator for
100 years each on 1 GPU for 1 day on an AWS GPU
node. Run tropical cyclone storm tracker and heat
anomaly algorithm to find collocated tropical
cyclone/heat wave events in parallel with each
ensemble member and only save data around
combined events. Perform analytics to assess global
risks the next day.

Without CREDIT: Requests for 1 million core-hours on
Derecho. Run for 357 compute-days across 500 nodes
to generate regular CAM ensemble in a week. Then
spend month writing parallel analytics script to parse
through many terabytes of model output.



CREDIT Future Directions

Open Questions Next Steps

 Ensemble generation: what is the most * Improve usability of CREDIT with software
accurate method with least latency? engineering support

« Tradeoffs between data volume, model size, * Adding ensemble generation
input data size, and types of physical « Regional model training and evaluation

constraints

 How to improve vertical exchange of
information in model, especially between
troposphere and stratosphere

« End-to-end black box model vs more
interpretable/tunable collection of component
models?

« S2S and longer scale rollout evaluation

« Training a new weather model with more
vertical levels at 0.25 degree or finer resolution

15



CREDIT opens a new pathway to
customization of the whole Al weather
and climate modeling pipeline

Physics constraints and data choices
greatly improve model realism

Paper accepted in npj Climate and
Atmospheric Science!

CREDIT source code and models:
https://github.com/NCAR/miles-credit

Links to CREDIT papers:
https://miles.ucar.edu/projects/credit/

Contact Me

Email: dgagne@ucar.edu

Github: djgagne

Bluesky: @DJGagneDos

Summary

Version 2025.2.0 is out now!
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Getting Started

Getting Started

Installing CREDIT from source

Configuration File

What's in the Configuration File?

Training and Inference
Training a Model
Running Inference

Evaluation and Metrics

Contributing

Contributing

Adding New Models and Datasets
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MILES-CREDIT Documentation

Welcome to the documentation for MILES-CREDIT, the NSF NCAR Community Research Earth Digital
Intelligent Twin project. CREDIT is a machine learning-based research platform for understanding the best
practices for training and operating global and regional Al autoregressive models, built as part of the NSF
NCAR Machine Integration and Learning for Earth Systems (MILES) group.

CREDIT enables users to train, run, and evaluate Al-based numerical weather and climate models. This
documentation will guide you through installation, configuration, training, inference, evaluation, and
extending the system with custom datasets and models.

What you'll find here:

¢ How to install CREDIT from source

* How to set up and train a model

¢ How to run inference and evaluate results

* How to contribute datasets, models, and enhancements
 Config file reference for reproducible HPC runs

» Tutorial videos for visual guidance

If you encounter issues or have suggestions, please open an issue on our GitHub repository. Contributions
are welcome!

Getting Started

Getting Started
Installation for Single Server/Node Deployment

Installation on Derecho
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