Welcome to the Paleoclimate Session!

1

Time	Торіс	Speakers
13:00–13:15	WELCOME & Seawater isotopic signatures of Pliocene tropical ocean	Ran Feng
13:15–13:30	Vegetation-climate feedbacks in the Pleistocene using iCESM1.3 and BIOME4	Elke Zeller
13:30–13:45	Impact of aerosol changes on Earth's pre-anthropogenic radiative budget (<i>REMOTE</i>)	Irina Thaler
13:45–14:00	Investigating the Physical State of the Modeled Eocene Ocean After Full Equilibration (<i>REMOTE</i>)	Adam Aleksinski
14:00–14:15	The Influence of Tethys and Central American Seaway on Climate during the Miocene Climatic Optimum (<i>REMOTE</i>)	Hamida Ngoma Nadoya
14:15–14:30	Constraining Antarctic ice sheet stability during the Last Interglacial (REMOTE)	Joseph Schnaubelt
14:30-15:00	BREAK	
15:00–15:15	Persistently active El Niño-Southern Oscillation since the Mesozoic	Xiang Li
15:15–15:30	Angiosperm tree heights during the Cretaceous Terrestrial Revolution: Evidence from the Upper Campanian Jose Creek Formation, south- central New Mexico	Garland Upchurch
15:30–15:45	Reconciling model and proxy records in late Cretaceous ocean simulations	Maya Tessler
15:45–16:00	Advancing Deep-Time Climate Reconstruction with a New Online Paleoclimate Data Assimilation Approach in CESM	Feng Zhu
16:15–17:00	WORKSHOP PLENARY: Wrap-up & General discussion	

- 15' for each talk incl. Q&A
- Reminder when 2' left
- Questions for speakers?
 - In the room: walk to the microphone
 - Online: type your questions in Slido

Your name, select CG1 South room

An Informal Happy Hour – All Are Welcomed!

5:30pm Sanitas Brewing Company, 3550 Frontier Ave ste a, Boulder, CO 80301 Meet in front of the building for carpooling

PWG resources

https://www.cesm.ucar.edu/working-groups/paleo

Or Google search "cesm pwg"

Simulations

Recent / Notable

- PaleoWeather: An Accelerated Scientific Discovery Project (ASD)
- PaleoPPE: A Suite of Perturbed Parameter Ensembles under a Wide Range of Temperatures
- Paleoclimate-Calibrated CESM2 and simulations (with FAQ and Diagnostic Plots)
- CESM2-CISM2 Transient Last Interglacial
- CESM2 Last Glacial Maximum
- CESM2 CMIP6-PMIP4 simulations for midHolocene and lig127k
- PlioMIP2 (CMIP6-PMIP4) simulations with CESM2, CESM1.2, and CCSM4
- CESM1.1 Last Millennium Ensemble Project
- TraCE21 Project, 21ka to present
- iTraCE: isotope-enabled CESM1.3, 19ka to 11ka
- CESM1.2 Pennsylvanian (~300Ma) UMich, UOregon

Do proxy $\delta^{18}O_{sw}$ support strengthened Pacific Walker Circulation in response to the Plio to Pleistocene CO₂ decline?

Ran Feng¹, Theodor Mayer¹, Tripti Bhattacharya², Heather Ford³, David Fastovich², Erin McClymont⁴, Sze Ling Ho⁵

1. University of Connecticut, 2. Syracuse University, 3. Queen Mary College, University of London, 4. Durham University, 5. National Taiwan University

Weakened Pacific Walker Circulation (PWC) in response to CO_2 increase

0.75

CESM CMIP5

- First discovered by Knutson and Manabe (1995 J. Clim.)
- Persistent feature across many generations of CMIPs
 - e.g., Vecchi et al., (2007, J. Clim.); Chung et al., (2019, Nat. Clim. Chan)
- Hard to validate
 - Internal variability
 - Transient response
 - Cooling due to aerosol forcing in the NH

Rugenstein et al., 2019, GRL Heede et al., 2023, GRL

Mid-Piacenzian as an analog for future climate change

- Mean CO₂ ~400 ppm (de la Vega et al., 2020, Nat. Comm.)
- Similar to present-day geography and topography
- CO₂ decline (Martinez-Boti, 2015, Nature; de la Vega, 2020, Nat. Comm.)
 - Cooling and intensification of the Northern hemisphere glaciation

Mid-Pliocene as an analog for future climate change

- Mean CO₂ ~400 ppm (de la Vega et al., 2020, Nat. Comm.)
- Similar to present-day geography and topography

Age (ka)

Martinez-Boti et al. 2015.

Nature, de la Vega, 2020,

Nat. Comm.

Experiments

- Coupled experiments with iCESM1.2 (iCESM1.3) (Brady et al., 2019)
 - 0.9 x 1.25° horizontal resolution for atmosphere and land
 - 1° resolution for the ocean and sea ice
- All experiments were run with mid-Piacenzian boundary conditions (Dowsett et al., 2016, Clim. Past.; Haywood et al., 2016, Clim. Past.)
 - Plio at 284.7 ppm CO₂
 - Plio at 400 ppm CO₂

Experiment ID	Model configuration	CO ₂ level
Plio1.4x, Plio1x	Fully coupled atmosphere, ocean land and sea ice	400 ppm, 284.7 ppm

Mayer et al. In prep.

Simulated mean state of $\delta^{18}O_{sw}$

• $\delta^{18}O_{sw}$ is relatively low in the WEP compared to EEP due to the strong input of freshwater flux with relatively low $\delta^{18}O$.

Simulated $\delta^{18}O_{sw}$ changes during the late Pliocene

• $\delta^{18}O_{sw}$ decreases in the WEP, but increases in the EEP with increasing CO₂.

$\delta^{18}O_{sw}$ changes not explained by $\delta^{18}O_p$ flux or precipitation flux

 Precipitation δ¹⁸O flux is consistent with wetgets-wetter and drygets-drier response of precipitation flux

Strongly correlated zonal current strength and $\delta^{18}O_{sw}$ variability

- Strong correlation between equatorial zonal current strength and $\delta^{18}O_{sw}$

Calculation of proxy $\delta^{18}O_{sw}$

- Carbonate δ^{18} O from a plankton foraminifera shell ($\delta^{18}O_{pf}$) is a function of both $\delta^{18}O_{sw}$ and seawater temperature: $T = 16.5 - 4.8 * (\delta^{18}O_{pf} - \delta^{18}O_{sw} + 0.27)$ (Bemis et al. 1998)
- Seawater temperature can be estimated with independent Mg/Ca ratio from the same shell:

Mg/Ca = 0.449 * exp(0.09 * T) (Anand et al., 2003)

- Solving above equations to get $\delta^{18}O_{sw}$ using Paleo-Seawater Uncertainty (PSU) Solver (Thirumalai et al., 2016) and propagate uncertainty

Signal decomposition

- Empirical Mode Decomposition of proxy $\delta^{18}O_{sw}$:
 - Internal variability: nonmonotonic components in the time series
 - Trends: monotonic component
- From mid-Piacenzian to early-Pleistocene:
 - Increase of proxy $\delta^{18}{\rm O}_{\rm sw}$ in the WEP and decrease of proxy $\delta^{18}{\rm O}_{\rm sw}$ in the EEP

Long-term evolution of E-W $\delta^{18}O_{sw}$ contrast

 Pacific equatorial current strength index using the longterm trends from the EMD:

 $\Delta_{w-e} \delta^{18} \mathbf{O}_{sw} =$

mean $\delta^{18}O_{sw}$ (ODP806, ODP1143) - $\delta^{18}O_{sw}$ (ODP847)

- Low $\Delta_{w-e} \delta^{18} O_{sw}$: weaker current
- high $\Delta_{w-e} \delta^{18} O_{sw}$: stronger current

Changes of proxy $\Delta_{w-e} \delta^{18} O_{sw}$ support strengthened equatorial current and PWC from late Pliocene to early Pleistocene Model-data comparison of $\Delta_{w-e} \delta^{18} O_{sw}$

Thanks for your attention!

Questions?