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Marine Cloud Brightening (MCB): Solar Climate 
Intervention Strategy

• Aims to modify the albedo of maritime 

boundary layer clouds through seeding 

with sea salt aerosols

• Injected sea salt aerosols act as efficient 

cloud condensation nuclei which can 

activate as cloud droplets
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Previous MCB studies commonly show uneven 
cooling patterns and a perpetual La Niña-like sea 

surface temperature (SST) response.

3Top: (Rasch et al., 2009) Bottom: (Hirasawa et al., 2023)

Targeting less susceptible regions leads to more uniform 
cooling and avoids triggering La Niña

(Chen et al., 2024)



MCB Experiments with 
CESM2 (fully coupled)

• We adapt the 20% cloud seeding scheme from Chen et al. 

(2024) to more uniform midlatitude regions in a single 

hemisphere.

• MCB is simulated within the purple regions by artificially 

increasing the cloud droplet number concentration of 

clouds within the boundary layer (<850 hPa) to 375 cm-3.

• MCB experiments are initiated in 2035, when they branch 

off the control (spun-up first member of the 16-member 

ensemble of simulations from 2015 to 2100 following the 

moderate Shared Socioeconomic Pathway scenario SSP2-
4.5).
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20% least susceptible (purple) and 5% most 
susceptible (red) ocean surface to cloud 

seeding (Chen et al., 2024) 

Target: restore present-day (control 2020-2039) temperature 
and precipitation conditions



Sensitivity Experiments: Local Winter vs. 
Summer Single-Hemisphere MCB Deployment
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20-year (2035-2055) MCB Sensitivity Experiment 
Scenarios

Local 
summer 
cloud 
seeding

MCB deployed in 
local summer for 3 
months each year 
(maximum incoming 
solar radiation)

Southern Hemisphere: 
December, November, 
January

Northern Hemisphere: 
June, July, August

Local 
winter 
cloud 
seeding

MCB deployed in 
local winter for 3 
months each year 
(minimum incoming 
solar radiation)

Southern Hemisphere: 
June, July, August

Northern Hemisphere: 
December, January, 
February



Statistically Significant Surface Temperature 
(Ts) Response

Multi-Year Mean Ts Difference: MCB experiment (2035-2055) – Present-day
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Summer Seeding Shifts the ITCZ.
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Shift in Intertropical Convergence Zone (ITCZ): Change in latitude of location of maximum precipitation (MCB 
experiment (annual mean) – Present-day) 
Statistically Significant Precipitation Rate (P) Response
Multi-Year Mean P Difference: MCB experiment (2050-2069) – Present day



Local summer seeding leads to 

◦ Uneven cooling patterns

◦ A shift of the ITCZ

Local winter seeding

◦ More uniformly impacts temperature

◦ Does not produce strong enough cooling
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35-year (2035-2069) MCB Experiments

Local 
fall+winter 

cloud 
seeding

MCB deployed in 
local fall and 
winter for 6 

months each year 
for 35 years.

Southern Hemisphere: March, 
April, May, June, July, August

Northern Hemisphere: 
September, October, November, 
December, January, February
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Statistically 
Significant Ts 
Response
Multi-Year Mean Ts 
Difference: MCB 
experiment (2050-
2069) – Present day

Fall+Winter Seeding in a single hemisphere leads to non-
uniform cooling patterns.

And shifts the ITCZ.

Ts [ºC]



To avoid non-uniform cooling patterns and shifting 
the ITCZ, the fall+winter schemes are combined 

into a single scheme.
• It demonstrates a similar 

performance to the 20% 

least susceptible scheme 

from Chen et al. (2024), but 

with slightly more intense 

cooling

• The combined scheme 

demonstrates the most 

effective restoration of 

present-day surface 

temperatures and 

precipitation rate (of 

experiments tested here).
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El Niño

La Niña

El Niño

La Niña

80% La Niña

68%

71%

72%

Control (2035-2055) is in La Niña 62% of the time

The Niño 3.4 Index Shows the impact of the MCB 
experiments on the El Niño Southern Oscillation.



Conclusions

◦ More organized cloud seeding masks with equal cloud seeding area can deliver a similar 
climate outcome 

◦ The seasonality of MCB deployment is important for climate outcomes

◦ Depending on the seasonality of deployment, single hemisphere MCB deployment can lead 

to uneven cooling and shifting the ITCZ

◦ Southern Hemisphere MCB deployment (in summer and fall+winter months) triggers more 

frequent La Niña than Northern Hemisphere deployment

◦ The seasonality of Southern Hemisphere MCB deployment is important for ENSO impacts

◦ Of the experiments tested here, fall+winter seeding in both hemispheres delivers the most 
effective restoration of present-day surface temperature and precipitation
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Thank you! 
Questions?

Contact: emme2@illinois.edu
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The Niño 3.4 Index Shows the impact of the MCB 
experiments on the El Niño Southern Oscillation.
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El 
Niño

La 
Niña

The most susceptible 5% scheme from Chen et al. (2024) clearly shows a triggering of perpetual La Niña.



Fall+Winter Seeding in the Southern Hemisphere 
triggers the most frequent La Niña.
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El Niño

La Niña

El Niño

La Niña

Fall+Winter Seeding in Both Hemispheres triggers 
more frequent La Niña than the 20% Least 

Susceptible scheme from Chen et al. (2024).

83% 67%

77% 65%

Control (2035-2069) is in La Niña 55% of the time.



CESM2 Specifications

Fully Coupled

◦ CAM6 with finite volume dynamical core of 1.25º (latitude) x 0.9º (longitude), and 32 vertical levels 

with 40 km model top

◦ 3-D POP2

◦ 1.25º zonal resolution

◦ Varying meridional resolution (0.27º to 0.64º in Northern Hemisphere and 0.27º to 0.53º in 

Southern Hemisphere)

◦ 60 vertical levels with a maximum depth of 5500m and uniform 10-m resolution in upper 160m 

◦ Active land (CLM5) with biogeochemistry 

◦ Active sea ice (CICE5)
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