

Impact of Seasonality on Climate Outcomes for Mid Latitude Marine Cloud Brightening

Pre-print

link

Erin Emme¹, Chih-Chieh Chen², Hannah M. Horowitz^{1,3}

CESM Workshop 2025

¹Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, ²Climate and Global Dynamics Division, NSF National Center for Atmospheric Research, Boulder, CO, USA, ³Department of Atmospheric Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA

Marine Cloud Brightening (MCB): Solar Climate Intervention Strategy

- Aims to modify the albedo of maritime boundary layer clouds through seeding with sea salt aerosols
- Injected sea salt aerosols act as efficient cloud condensation nuclei which can activate as cloud droplets

Previous MCB studies commonly show uneven cooling patterns and a perpetual La Niña-like sea surface temperature (SST) response.

Top: (Rasch et al., 2009) Bottom: (Hirasawa et al., 2023)

(Chen et al., 2024)

MCB Experiments with CESM2 (fully coupled)

- We adapt the 20% cloud seeding scheme from Chen et al. (2024) to more uniform midlatitude regions in a single hemisphere.
- MCB is simulated within the purple regions by artificially increasing the cloud droplet number concentration of clouds within the boundary layer (<850 hPa) to 375 cm⁻³.
- MCB experiments are initiated in 2035, when they branch off the control (spun-up first member of the 16-member ensemble of simulations from 2015 to 2100 following the moderate Shared Socioeconomic Pathway scenario SSP2-4.5).

Target: restore *present-day* (control 2020-2039) temperature and precipitation conditions

20% least susceptible (purple) and 5% most susceptible (red) ocean surface to cloud seeding (Chen et al., 2024)

Sensitivity Experiments: Local Winter vs. Summer Single-Hemisphere MCB Deployment

20-yea	r (2035-2055) MCB Se Scenarios	55) MCB Sensitivity Experiment Scenarios	
Local summer cloud seeding	MCB deployed in local summer for 3 months each year (maximum incoming solar radiation)	Southern Hemisphere: December, November, January	
		Northern Hemisphere: <i>June, July, August</i>	
Local winter cloud seeding	MCB deployed in local winter for 3 months each year (minimum incoming solar radiation)	Southern Hemisphere: <i>June, July, August</i>	
		Northern Hemisphere: <i>December, January,</i> <i>February</i>	

Statistically Significant Surface Temperature (T_s) Response

Multi-Year Mean T_s Difference: MCB experiment (2035-2055) – Present-day

Summer Seeding Shifts the ITCZ.

Stattsticater signification of maximum precipitation (MCB Manager Near Present day

Local summer seeding leads to

- Uneven cooling patterns
- $\circ\,$ A shift of the ITCZ

Local winter seeding

- More uniformly impacts temperature
- Does not produce strong enough cooling

•	35-year (2035-2069) MCB Experiments		
	Local fall+winter cloud seeding	MCB deployed in local fall and winter for 6 months each year for 35 years.	Southern Hemisphere: <i>March,</i> <i>April, May, June, July, Augus</i> t
			Northern Hemisphere: September, October, November, December, January, February

Fall+Winter Seeding in a single hemisphere leads to nonuniform cooling patterns.

Statistically Significant T_s Response

Multi-Year Mean T_s Difference: MCB experiment (2050-2069) – Present day

And shifts the ITCZ.

To avoid non-unif the ITCZ, the fal

- It demonstrates a similar performance to the 20% least susceptible scheme from Chen et al. (2024), but with slightly more intense cooling
- The combined scheme demonstrates the most effective restoration of present-day surface temperatures and precipitation rate (of experiments tested here).

The Niño 3.4 Index Shows the impact of the MCB experiments on the El Niño Southern Oscillation.

Control (2035-2055) is in La Niña 62% of the time

Conclusions

- More organized cloud seeding masks with equal cloud seeding area can deliver a similar climate outcome
- The seasonality of MCB deployment is important for climate outcomes
 - Depending on the seasonality of deployment, single hemisphere MCB deployment can lead to uneven cooling and shifting the ITCZ
 - Southern Hemisphere MCB deployment (in summer and fall+winter months) triggers more frequent La Niña than Northern Hemisphere deployment
 - The seasonality of Southern Hemisphere MCB deployment is important for ENSO impacts
- Of the experiments tested here, fall+winter seeding in both hemispheres delivers the most effective restoration of present-day surface temperature and precipitation

Acknowledgements

- Hannah Horowitz, PhD Advisor/coauthor
- Chih-Chieh (Jack) Chen, NSF NCAR Mentor/co-author
- NSF NCAR Graduate Visitor Program (GVP)
- UIUC Civil and Environmental Engineering Department

Pre-print link

Thank you! Questions?

Contact: emme2@illinois.edu

The Niño 3.4 Index Shows the impact of the MCB experiments on the El Niño Southern Oscillation.

The most susceptible 5% scheme from Chen et al. (2024) clearly shows a triggering of perpetual La Niña.

CESM2 Specifications

Fully Coupled

- CAM6 with finite volume dynamical core of 1.25° (latitude) x 0.9° (longitude), and 32 vertical levels with 40 km model top
- 3-D POP2
 - 1.25° zonal resolution
 - Varying meridional resolution (0.27° to 0.64° in Northern Hemisphere and 0.27° to 0.53° in Southern Hemisphere)
 - $^\circ\,$ 60 vertical levels with a maximum depth of 5500m and uniform 10-m resolution in upper 160m
- Active land (CLM5) with biogeochemistry
- Active sea ice (CICE5)

