Climate variability sensitivity to the parameterization of surface fluxes in CESM2

Charlotte A. DeMott Colorado State University

with additional input from Mark Branson, Carson Witte, Chris Zappa, Carol Anne Clayson

CESM Workshop, Boulder CO, 9-11 June 2025

global heat transport and energy input

Atmospheric & Ocean Heat Transport

models consistently underestimate ocean transport,

- overestimate atmospheric transport
- this is true for CMIP3, CMIP5, and CMIP6

Ocean Energy Input

Donahoe et al. 2024

- too-strong evaporation in tropics drives the ocean heat transport bias
- potential sources of evaporation biases
 - too strong winds
 - too warm SST
 - too dry MBL
 - erroneous surface flux parameterization

global latent heat flux estimates

Tang et al. 2024

global latent heat flux estimates

surface flux parameterization in CESM2: what can be improved?

bulk transfer coefficients

reduce fluxes : increase SST

ocean cool skin effects

diurnal warm layer effects

increase fluxes : decrease SST

total effect

CESM2: mean state changes

CESM2: mean state changes

• slightly less OHT with C36plus

• stronger Hadley circulation with C36plus

CESM2: tropical variability and the MJO

- greater amplitude MJO
- improved propagation across
 Maritime Continent

CESM2: ENSO changes

• too periodic 🗙

- weak asymmetry X
- too periodic \uparrow X • weak asymmetry 🗙

- too periodic \downarrow X improved asymmetry

COARE fluxes in CEMS2: summary

feature	
mean state	modes
ENSO	po
MJO	

- bulk transfer coefficients alone can have negative impacts on variability compared to LY

effect of COARE fluxes

t changes: enhanced Hadley circulation

sitive effects: improved asymmetry

egative effects: greater periodicity

improved amplitude improved E/W power ratio reduced MC propagation barrier

• inclusion of cool skin and diurnal warm layer approximations yield greatest improvements!

CESM3: thinking ahead

• MOM6 ocean:

- near-surface vertical resolution increases from 10 m to 2.5 m diurnal warm layers and (perhaps) rain layers can be directly simulated • cool skin effect must still be parameterized

• COARE3.x flux algorithm:

- is among the "least problematic" algorithms when compared to direct covariance flux measurements
- getting the flux "right" improves some aspects of variability with minimal changes to the mean state

extra slides

understanding flux algorithm effects: a model hierarchy approach

JRA55: 1979-1988

CESM2: mean state changes

LY - HadISST (climatology)

CESM2: tropical variability and the MJO

source	E/W power rati
TRMM	2.30
LY	2.22
C36	1.88
C36plus	2.04

- greater amplitude MJO
- improved propagation across
 Maritime Continent

CESM2 Ocean Potential Temperature Difference

CESM2 Ocean Potential Temperature Difference

CESM2 Ocean Velocity in grid-x direction Difference

