Constant equilibrium climate sensitivity (ECS) across a wide range of climates in extra-long CESM simulations

Paul Edwin Curtis¹, Alexey V. Fedorov^{1,2}, Nicole Feldl³

¹Department of Earth and Planetary Sciences, Yale University ²LOCEAN/IPSL, Sorbonne University ³Department of Earth and Planetary Sciences, University of California, Santa Cruz

Tuesday 10th June 2025

How High (or Low) is ECS?

- **ECS**: The global mean temperature change (ΔT_{eq}) once the climate has equilibrated to a doubling in atmospheric CO₂ concentrations (C).
- ► IPCC AR6 2021: likely 2.5°C ≤ ECS ≤ 4°C (below).
- ▶ Sherwood *et al.* 2020: 66% likelihood 2.6°C ≤ ECS ≤ 3.9°C.

(a) Equilibrium climate sensitivity estimates (°C)

One major uncertainty: Lack of GCM simulations run towards equilibrium.

Obtaining ECS From Climate Models

- Only a handful of studies perform abrupt $n \times CO_2$ GCM experiments run towards equilibrium to get $\Delta T_{eq}/C$.
- LongRunMIP simulations (below) suggest ΔT_{eq}/C increases for larger instantaneous CO₂ increases.

Are we running models for long enough?

CESM1 Experiments

- Community Earth System Model version 1 (CESM1.0.4).
- ▶ In the atmosphere (CAM4): nominal resolution $\sim 3.75^{\circ} \times 3.75^{\circ}$ (T31).
- ▶ In the ocean (POP2): $\sim 0.5^{\circ}$ in the equator and high latitudes; $\sim 3^{\circ}$ elsewhere.
- Abrupt n×CO₂ experiments (below), run to quasi-equilibrium.
- Part of a series of simulations totalling >80,000 years.

Experiment	Integration Length (Years)
16×CO ₂	4,250
8xCO ₂	10,000
4xCO ₂	6,895
2xCO ₂	9,100
piControl	6,375
0.71×CO ₂	4,200
0.5×CO ₂	7,000
0.35×CO ₂	6,000

- Main advantage: long timescales + consider global cooling.
- Longest experiments used to estimate ECS in a full-complexity GCM.

How Much Warming/Cooling and When?

- Normalised global mean surface air temperature change (ΔT/C) against the number of atmospheric CO₂ doublings (C).
- Is 1,000 years enough?

How Much Warming/Cooling and When?

- Normalised global mean surface air temperature change (ΔT/C) against the number of atmospheric CO₂ doublings (C).
- Is 2,000 years enough?

How Much Warming/Cooling and When?

- Normalised global mean surface air temperature change (ΔT/C) against the number of atmospheric CO₂ doublings (C).
- At quasi-equilibrium: $\Delta T/C \rightarrow$ constant for the 5 warmest experiments.

What Does Effective Climate Sensitivity (EffCS) Tell Us?

- Considering $N = F + \lambda \Delta T$: \Rightarrow EffCS: An estimation to ECS.
- λ: obtained via a least-squares linear regression of N and ΔT over a given interval ('differential feedback' definition; Rugenstein and Armour, 2021).
- ΔT_{eq} estimated by extrapolating to N = 0.
- EffCS: Does well for warmest climates; very far from ECS in colder climates.
- Indicates large changes in λ during climate equilibration.

Shortwave (SW) Feedbacks Reduce λ

- Variations in λ mainly driven by SW feedbacks.
- In global warming: SW cloud feedbacks.
- In global cooling: SW clearsky feedback \rightarrow albedo feedbacks.

Summary & Conclusions

- We determine a remarkably constant ECS ~ 3.43°C across a wide range of climates with CO₂ ranging from 1/√2× (285K) to 16× (300K) pre-industrial.
- On long timescales: $\Delta T_{eq}/C$ does not necesarily increase for higher C.
- This takes > 2,000 5,000 years to emerge.
- Higher ECS $\sim 4.3^{\circ}$ C in strongest global cooling experiments.
- EffCS becomes an increasingly poor indicator of ECS for colder climates.
- Run the models for as long as possible + consider global cooling

P. E. Curtis, A. V. Fedorov, & N. Feldl, Constant Equilibrium Climate Sensitivity (ECS) in Ultralong Simulations of a Wide Range of Climates. *Manuscript in review for Geophys. Res. Lett.*

Acknowledgements

P.E.C. is supported by NASA Future Investigators (FINESST) fellowship 80NSSC24K0007. We acknowledge assistance from Dr. Thomas Langford, Dr. Kaylea Nelson, and Yale's high-performance computing center.