Does model resolution impact its Climate Sensitivity ?

Fred Castruccio (NSF NCAR)

Gokhan Danabasoglu (NSF NCAR), Julio Bacmeister (NSF NCAR), Ping Chang (TAMU)

30th CESM Workshop June 11th 2025

This material is based upon work supported by the NSF National Center for Atmospheric Research, which is a major facility sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977

4xCO2 inferred Equilibrium Climate Sensitivity (iECS)

⁽Gregory et al., 2004)

4xCO2 surface warming

Global distribution of shortwave, longwave and net radiation feedbacks

We use feedback relationships of the form:

 $\partial \mathcal{X} = \lambda_x \, \partial T$

where \mathcal{X} is a flux, T is surface temperature, and λ_x is a feedback parameter (slope) that linearly relates changes in \mathcal{X} and T.

9

ε

0 W m⁻² K⁻¹

m

9-

6

Regional contributions to radiation feedbacks

The global feedback parameter λ_x can be written as a weighted sum of local feedbacks $\lambda_{x;k}$

 $\lambda_x = \sum_k a_k A_k \, \lambda_{x;k}$

where a_k is the the areal fraction of region k, and A_k is the regional warming amplification factor ($\partial T_k = A_k \ \partial T$)

Ocean response under abrupt-4xCO2

Annual mean AMOC at 45°N

m.

80

year

60

20

40

20

.5

10

5

AMOC@45°N (Sv)

Mean meridional Ocean Heat Transport

Sea Ice and albedo response under abrupt-4xCO2

Annual mean Sea Ice area

Annual mean high-latitude (> 60°) effective surface albedo.

 $(F_{S Down.} - F_{S Net} / F_{S Down.})$

1%CO2 Experiment and TCR

1%CO2 surface warming

Summary

- abrupt 4xCO2 and 1%CO2 increase simulations have been performed using CESM HR (0.25° / 0.1°) and CESM LR (nominal 1°) configurations
- both iECS and TCR are very similar across resolution
- large differences in local warming amplification with a hemispheric asymmetry resulting in relatively more/less warming in the Northern/Southern Hemisphere, respectively, in CESM HR and CESM LR have been identified
- contributions from radiation feedback have been exanimated
- AMOC (and associated OHT) have been linked to the difference in regional warming amplification under an abrupt 4xCO2 concentration increase
- So... Does model resolution impact its Climate Sensitivity ?
 - ➡ No according to iECS and TCR
 - But I hope I convinced you that the answer is actually more nuanced

Data acquisition: The datasets are served to the community through the NSF NCAR Research Data Archive (<u>RDA</u>). Datasets archived on the RDA can be accessed within the CISL computing environment or downloaded over HTTP or Globus transfer for fast, secure, and reliable way to use elsewhere. A copy of the archive is stored in Campaign Storage and so is readily accessible by NCAR HPC system users and by individuals who have access to this system.

CESM High-Resolution Simulations (CESM1.3; 0.1° ocn; 0.25° atm)

500-year PI control; 80-year 1%CO₂; 150-year 4xCO₂; 10-member (1850) 1920-2005 historical; 10-member 2006-2100 transient w/ RCP 8.5: 10-member 2006-2100 transient w/ RCP6.0; 1-member 2006-2100 transient w/ RCP4.5; 1-member 2006-2100 transient w/ RCP2.6; 3-member 1970-2020 Ozone withholding; 3-member 1950-2014 AMIP: All HighResMIP coupled and AMIP; 5 cycles of 1958-2018 OMIP (w/ BGC); Decadal Predictions (1980-2023; HRDP); and Corresponding low-res (~1°) simulations

Visualization Credit: Matt Rehme, Visualization Services and Research Group, NSF NCAR CISL

Datasets are available to the community.

Chang et al. (2020, JAMES)

