Ed Blanchard-Wrigglesworth Department of Atmospheric and Climate science University of Washington

Patricia DeRepentigny Université catholique de Louvain, Belgium (previously at NCAR)

Dargan Frierson Atmospheric and Climate science, University of Washington

Increasing boreal fires reduce future global warming and sea ice loss

Summer aerosol optical depth (MODIS/Aqua) has increased over the boreal regions and the Arctic

Produced new ensemble with CESM2, over 2015-2060, 9 members, branched off CESM2-LE in 2015

Same CMIP6 forcings as CESM2-LE (SSP370 scenario)

Except for boreal biomass burning emissions, which follow observations/observed trends

2060

Black carbon, sulfate, organic carbon (POM) are all updated

BorealFire - CESM2-LE, JJA column burden differences

Mean annual temperature

0.33°C/decade warming in BorealFire 0.37°C/decade warming in CESM2-LE (12% reduction)

0.49 C/decade warming in Borearrie 0.78°C/decade warming in CESM2-LE (38% reduction)

Annual temperature trends

Relative cooling in the Arctic, northern continents (>40°N), North Pacific (but not North Atlantic). No change in Southern Hemisphere.

Seasonal temperature trend differences BorealFire - CESM2-LE

Difference JJA

Local Summer boreal peak cooling

Difference DJF

Winter and fall Arctic peak cooling

Year-round in North Pacific

Southward shift in tropical precipitation (consistent with Chiang and Bitz, 2005)

Α

Decrease in high northern latitude precipitation (a cooler Arctic is a drier Arctic, and emissions suppress boreal precipitation in JJA)

Reduction in Arctic sea ice loss, especially in summer

Why does all this happen

Zonal-mean Aerosol concentration number difference, JJA

(BorealFire-CESM2)

Annual-mean differences in:

Cloud droplet number

Over Canada / Siberia and Arctic, no change in summer cloud cover, but enhanced albedo (reflectivity) of existing clouds -> reduced solar flux, less summer sea ice melt

Thicker/larger sea ice cover drives cooler temperatures in fall/winter

In North Pacific and North Atlantic, greater low cloud fraction -> reduced solar flux at surface

Low Cloud fraction

Net solar at surface

In summary

Boreal biomass burning emissions have increased drastically in observations in recent years, in contrast to CMIP6 2015-2100 scenarios, which have no trend. Observed aerosol optical depth over the Arctic has increased.

Running CESM2 with increasing boreal emission scenarios over 2015-2060 shows a slowdown in global warming (12%), Arctic warming (38%), less sea ice loss, and changes in tropical precipitation. Summer forcings result in year-round impacts beyond boreal region.

Boreal emissions matter, and CMIP7 should not simply repeat CMIP5/6 scenarios.

Blanchard-Wrigglesworth, E., DeRepentigny, P., & Frierson, D. M. (2025). Increasing boreal fires reduce future global warming and sea ice loss. *Proceedings of the National Academy* of Sciences, 122(23), e2424614122.

Extra slides

What's next?

Test sensitivity of results with other GCMs (run mini-MIP). Friends with a GCM? First results with EC-Earth3, upcoming with E3SM.

Test sensitivity to forcings: add inter-annual variability, ramping up followed by ramp down of BBEs, changing seasonality (more early season fires, longer fire season).

How/what observations can we use to validate simulations?

Reach out to CMIP7 working groups.

How much does coupling of weather and fire matter to aerosol transport / lifetimes

Default 2015-2100 emission files set-up in CESM2: monthly emissions for 2015, 2020, 2030, etc (model interpolates in between years).

Our new CESM2-BorealFire ensemble:

2020: mean observed 2019-2023 emissions.

2030-2060: extrapolated observed 1997-2023 trends for each grid cell and each calendar month.

May be conservative: linear extrapolation, not exponential.

No new fires in grid cells & months that had ²⁰⁶⁰ none in 1997-2023.

Most of BorealFire emissions are precedented in observations (2023)

Enhanced emissions take place in the summer months

No change in cold season (no fires in winter)

So... is there any evidence of all this in observations

from MODIS (Zhong et al, in review)

Summer (JJA) AOD trends, 2000-2020,

So... is there any evidence of all this in observations (Getting speculative now in some plots I made yesterday)

27

So... is there any evidence of all this in observations (Getting speculative now in some plots I made yesterday)

So... is there any evidence of all this in observations (Getting speculative now in some plots I made yesterday)

29

Rantanen et al, 2022

Fig. 5 Seasonality of the 43-year (1979–2021) Arctic amplification ratio.

New forcing 2020-2100

Seasonal changes in precipitation

AODVIS BorealFire DJF

AODVIS BorealFire MAM

AODVIS CESM2-LE DJF

Difference DJF

AODVIS CESM2-LE MAM

AODVIS BorealFire JJA

AODVIS BorealFire SON

AODVIS CESM2-LE JJA

AOD

AOD					
I					
0	0.02	0.04	0.06	0.08	0.1

AODVIS CESM2-LE SON

Difference SON

CLDLOW BorealFire MAM

CLDLOW BorealFire DJF

CLDLOW CESM2-LE DJF

Difference DJF

0

0

0.02

0.04

0.06 0.08

0.1

CLDLOW BorealFire SON

CLDLOW CESM2-LE SON

Difference SON

FSNS BorealFire DJF

FSNS CESM2-LE DJF

Difference DJF

0

W/m2

0

10

FSNS BorealFire SON

FSNS CESM2-LE SON

30

20

CDNUMC BorealFire DJF

CDNUMC BorealFire MAM

CDNUMC CESM2-LE DJF

Difference DJF

CDNUMC CESM2-LE MAM

CDNUMC BorealFire SON

CDNUMC CESM2-LE JJA

1.2 1.6 1.8 1.4 2 1 **Difference JJA** ×10¹¹

CDNUMC CESM2-LE SON

albedo BorealFire MAM

albedo BorealFire DJF

albedo CESM2-LE MAM

0.1

0

0

0.05

0.1

-0.1 -0.2 -0.15 -0.05

albedo CESM2-LE DJF

Difference DJF

albedo BorealFire SON

albedo CESM2-LE JJA

0.15

0.2

albedo CESM2-LE SON

Difference SON

Appendix C: Overview of emission factors used in this study

Table C1. Emission factors in grams of species per kilogram dry matter (DM) burned. Note that NO_x is listed as NO. SAVA: savanna, grassland, and shrubland fires; BORF: boreal forest fires; TEMF: temperate forest fires; DEFO: tropical deforestation and degradation; PEAT: peat fires; and AGRI: agricultural waste burning.

	SAVA	BORF	TEMF	DEFO	PEAT	AGRI
DM	1000	1000	1000	1000	1000	1000
С	488.27	464.99	489.42	491.75	570.05	480.35
BC	0.37	0.5	0.5	0.52	0.04	0.75
CH ₄	1.94	5.96	3.36	5.07	20.8	5.82
CO	63	127	88	93	210	102
H ₂	1.7	2.03	2.03	3.36	3.36	2.59
N_2O	0.2	0.41	0.16	0.2	0.2	0.1
NH ₃	0.52	2.72	0.84	1.33	1.33	2.17
NO	3.9	0.9	1.92	2.55	1	3.11
OC	2.62	9.6	9.6	4.71	6.02	2.3
SO ₂	0.48	1.1	1.1	0.4	0.4	0.4
C_2H_6	0.66	1.79	0.63	0.71	0.71	0.91
CH ₃ OH	1.18	2.82	1.74	2.43	8.46	3.29
C ₂ H ₅ OH	0.024	0.055	0.1	0.037	0.037	0.035
C ₃ H ₈	0.1	0.44	0.22	0.126	0.126	0.28
C_2H_2	0.24	0.18	0.26	0.44	0.06	0.27
C_2H_4	0.82	1.42	1.17	1.06	2.57	1.46
С ₃ Н ₆	0.79	1.13	0.61	0.64	3.05	0.68
C_5H_8	0.039	0.15	0.099	0.13	1.38	0.38
$C_{10}H_{16}$	0.081	2.003	2.003	0.15	0.15	0.005
C_7H_8	0.08	0.48	0.19	0.26	1.55	0.19
C_6H_6	0.2	1.11	0.27	0.39	3.19	0.15
$C_{8}H_{10}$	0.014	0.18	0.13	0.11	0.11	0.114
Toluene lump	0.27	1.63	0.54	0.70	4.36	0.42
Higher alkenes	0.13	0.38	0.37	0.27	0.27	0.33
Higher alkanes	0.05	0.35	0.22	0.07	0.07	0.34
CH ₂ O	0.73	1.86	2.09	1.73	1.4	2.08
C_2H_4O	0.57	0.77	0.77	1.55	3.27	1.24
C ₃ H ₆ O	0.16	0.75	0.54	0.63	1.25	0.45
C_2H_6S	0.0013	0.00465	0.008	0.00135	0.00135	0.0013
HCN	0.41	1.52	0.72	0.42	8.11	0.29
НСООН	0.21	0.57	0.28	0.79	0.38	1
CH₃COOH	3.55	4.41	2.13	3.05	8.97	5.59
MEK	0.181	0.22	0.13	0.5	0.5	0.9
CH ₃ COCHO	0.73	0.73	0.73	0.73	0.73	0.73
	~ ~ ~	0.06	0.07	0.74	0.74	0 - 1

Appendix D: Regional comparison between CMIP6 and CMIP5

Figure 7.36 Measured and modeled annual mean time series of surface-level SO4 at 13 Arctic locations.

