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* CAM-FV3: NCAR Community Atmosphere Model (CAM), run with the finite-
volume cubed-sphere (FV3) dynamical core.



Explicit diffusion
Artificial diffusion of order 2𝑞𝑞, coefficient 𝜈𝜈:

 Laplacian (𝑞𝑞 = 1): 𝜈𝜈∇2𝒖𝒖
 Hyperviscosity (𝑞𝑞 ≥ 2): −1 𝑞𝑞+1𝜈𝜈∇2𝑞𝑞𝒖𝒖.

Horizontal momentum equations, for 𝒖𝒖 = (𝑢𝑢, 𝑣𝑣, 0):

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕 = ⋯+ −1 𝑞𝑞+1𝜈𝜈∇2q𝒖𝒖



Divergence and vorticity damping
Instead, damp the divergent and rotational modes
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𝜕𝜕𝜕𝜕 = ⋯+ −1 𝑞𝑞+1 𝜈𝜈𝐷𝐷 ∇(∇2 q−1 𝐷𝐷)
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Gnomonic cubed-sphere grids
Avoids the pole problem of lon-lat grids

Gnomonic: map straight lines from six panels 
(cube faces) onto great circles on the sphere

From Anthony Chen
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SE (NCAR)
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Three cubed-sphere grids
Local 
panel
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Map

See Santos (2024) thesis for more details on these grids.

1. Equidistant, original grid of Sadournay 
(1972):
• Equal spacings on the local panel 

             = wide range of cell areas

2. Equiangular (Ronchi, 1995), most 
common, used by LFRic (UK Metoffice), 
SE (NCAR)

3. Equi-edge, an additional option 
(default) for FV3

• More uniform cells at panel edges



Comparison of cubed-sphere grids:
Equidistant Equiangular Equi-edge

Range of cell areas Largest Smallest

Location of 
smallest cell

Corners Middle of edges Corners

Maximum aspect 
ratio (Δ𝑦𝑦/Δ𝑥𝑥)

1.41 ( 2) 1.41 ( 2) ~1.06
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Details of the linear stability analysis are found in ARXIV pre-print: Stability 
analyses of divergence and vorticity damping on gnomonic cubed-sphere grids, 
Andrews and Jablonowski (2025).



Amplification factors
CAM defaults: Laplacian 𝐶𝐶𝐷𝐷,2 = 0.15 in the upper sponge, hyperviscous 𝐶𝐶𝐷𝐷,2𝑞𝑞 = 0.15

Equi-edge is stable. 6th and 8th order equiangular are unstable.

Equi-edge Equiangular

Unstable 
region

Stable, with 
oscillationsStable, with 

oscillations

Stable
Stable

Γ = 𝑒𝑒𝑖𝑖𝑖𝑖Δ𝑡𝑡



Grid stability function
Minimum Ψ𝑐𝑐  for equi-edge is ~1.22 2/3  greater than equiangular

Corners CornersMiddle of edges



CAM-FV3 testing
• Use the baroclinic wave test case of Jablonowski, Williamson (2006)

• Run for fifteen days and identify the largest stable 𝐶𝐶𝐷𝐷,2𝑞𝑞 

• Equi-edge and equiangular grids



CAM-FV3* horizontal momentum equations

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝑌𝑌 + 𝒱𝒱𝑦𝑦,2𝑞𝑞 + ⋯+ 𝛿𝛿𝑥𝑥𝒟𝒟𝑥𝑥,

𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = − 𝑋𝑋 + 𝒱𝒱𝑥𝑥,2𝑞𝑞 + ⋯+ 𝛿𝛿𝑥𝑥𝒟𝒟𝑦𝑦 ,

• 𝑋𝑋,𝑌𝑌 transport operators implicitly diffuse 𝜉𝜉 but not 𝐷𝐷
• 𝒟𝒟 are divergence damping terms (required)

• 𝒱𝒱 are vorticity damping terms (optional)

* CAM-FV3: NCAR Community Atmosphere Model (CAM), run with the finite-volume cubed-sphere 
(FV3) dynamical core.



CAM-FV3 divergence damping
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• Equi-edge can use stronger divergence damping. 

• Equiangular sixth- and eighth-orders are unstable with CAM default 𝐶𝐶𝐷𝐷 = 0.15.



Divergence damping blow-up locations
OMEGA850: Vertical pressure velocity (Pa/s) at 850 hPa.

Using 6th-order divergence damping with 𝐶𝐶𝐷𝐷,6 0.001 above the stable value.
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CAM-FV3 vorticity damping

𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕
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• 𝑋𝑋,𝑌𝑌 transport operators implicitly diffuse 𝜉𝜉 but not 𝐷𝐷
• 𝒟𝒟 are divergence damping terms (required)

• 𝒱𝒱 are vorticity damping terms (optional)



Vorticity damping in CAM-FV3
1. Vorticity limits are well below linear theory, due to implicit transport diffusion.



Vorticity damping in CAM-FV3
1. Vorticity limits are well below linear theory, due to implicit transport diffusion.

2. Sixth-order has a larger stability range than fourth-order.



Vorticity damping in CAM-FV3: 
The transport scheme affects stability

3. Maximum 𝐶𝐶𝜉𝜉,2𝑞𝑞 depends on the horizontal transport scheme.

Monotonic = more constraints, generally more diffusive.

Hypothesis: Can this indicate the implicit diffusion from transport?
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Conclusions
• Equi-edge can use stronger divergence damping than equiangular 

• CAM-FV3 defaults are unstable for equiangular (sixth- and eighth-orders)!

• Different blow-up locations on the two grids:
• Equi-edge at panel corners
• Equiangular at the centre of panel edges

• The maximum stability of vorticity damping depends on the transport 
scheme
• Can this indicate implicit diffusion?

• ARXIV pre-print: Stability analyses of divergence and vorticity damping on gnomonic 
cubed-sphere grids, Andrews and Jablonowski (2025).



ADDITIONAL SLIDES



Stencils
A higher order of damping requires more ghost cells.



C- and D-grids
• For application to CAM-FV3, we use the D-grid.

• For the C-grid, the 𝐶𝐶𝐷𝐷 ,𝐶𝐶𝜉𝜉  limits are swapped.

Pletzer, Hayek (2018)
D-grid

C-grid



Linear stability
• Introduce a grid stability function:

• Then, the linear stability limit is:

• For vorticity damping, D-grid evaluations 
are used:

• Δ𝐴𝐴𝑐𝑐 cell areas on the cubed-sphere
• sin 𝛼𝛼  is internal angle; quantifies non-orthogonality

• Δ𝐴𝐴𝑚𝑚𝑖𝑖𝑚𝑚 the smallest cell area
• 𝜒𝜒 = Δ𝑦𝑦

Δ𝑥𝑥
 is the cell aspect ratio



Grid stability function
Minimum value for the equi-edge grid: 1

3
≈ 0.577

Minimum value for the equiangular grid: 2
3
≈ 0.471

Ratio is 2
3
≈ 1.22

There is a larger range of stable coefficients on the equi-edge grid.



Divergence damping in CAM-FV3
Compare five transport schemes: 

Two unlimited, three monotonic.



Mixed-order divergence damping
Fix Laplacian coefficient, 𝐶𝐶𝐷𝐷,2 = 0.05, then 
find maximum 𝐶𝐶𝐷𝐷,2𝑞𝑞

Single-order

Mixed-order



Vorticity damping results



Computing sin(𝛼𝛼)
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