# Stability analyses of divergence and vorticity damping on gnomonic cubed-sphere grids

Timothy C. Andrews, Christiane Jablonowski

Department of Climate and Space Sciences, University of Michigan

CESM Workshop, Boulder, Colorado Monday 9<sup>th</sup> June 2025

All dynamical cores require diffusion.

Implicit: Embedded in numerical methods

Explicit: Extra terms, e.g. in the horizontal momentum equations.

All dynamical cores require diffusion.

Implicit: Embedded in numerical methods

Explicit: Extra terms, e.g. in the horizontal momentum equations.

For explicit diffusion, there is a finite range of stability for the damping coefficient, C.

All dynamical cores require diffusion.

Implicit: Embedded in numerical methods

Explicit: Extra terms, e.g. in the horizontal momentum equations.

For explicit diffusion, there is a finite range of stability for the damping coefficient, C.

If *C* is too small: Energy at the small scales can cause instability

All dynamical cores require diffusion.

Implicit: Embedded in numerical methods

Explicit: Extra terms, e.g. in the horizontal momentum equations.

For explicit diffusion, there is a finite range of stability for the damping coefficient, C.

If *C* is too small: Energy at the small scales can cause instability If *C* is too large: The diffusion causes instability

All dynamical cores require diffusion.

Implicit: Embedded in numerical methods

Explicit: Extra terms, e.g. in the horizontal momentum equations.

For explicit diffusion, there is a finite range of stability for the damping coefficient, C.

If *C* is too small: Energy at the small scales can cause instability If *C* is too large: The diffusion causes instability

#### Contents:

- 1. Divergence and vorticity damping
- 2. Cubed-sphere grids
- 3. Linear stability analysis
- 4. Application to CAM-FV3\*

\* CAM-FV3: NCAR Community Atmosphere Model (CAM), run with the finitevolume cubed-sphere (FV3) dynamical core.

## Explicit diffusion

Artificial diffusion of order 2q, coefficient v:

Laplacian (
$$q = 1$$
):  $\nu \nabla^2 \boldsymbol{u}$   
Hyperviscosity ( $q \ge 2$ ):  $(-1)^{q+1} \nu \nabla^{2q} \boldsymbol{u}$ .

Horizontal momentum equations, for  $\boldsymbol{u} = (u, v, 0)$ :

$$\frac{\partial \boldsymbol{u}}{\partial t} = \dots + (-1)^{q+1} \boldsymbol{\nu} \nabla^{2q} \boldsymbol{u}$$

## Divergence and vorticity damping

Instead, damp the divergent and rotational modes

$$\frac{\partial \boldsymbol{u}}{\partial t} = \dots + (-1)^{q+1} \nu_D \nabla (\nabla^{2(q-1)} D) + (-1)^{q+1} \nu_{\xi} \nabla \times (\nabla^{2(q-1)} \xi \hat{\mathbf{k}}),$$

Divergence:  $D = \nabla \cdot \boldsymbol{u}$ 

Vorticity (relative):  $\xi = \hat{\mathbf{k}} \cdot (\nabla \times \mathbf{u}), \quad \hat{\mathbf{k}} = (0,0,1)$ 

#### Divergence and vorticity damping

Instead, damp the divergent and rotational modes,

$$\frac{\partial \boldsymbol{u}}{\partial t} = \dots + (-1)^{q+1} \nu_D \nabla (\nabla^{2(q-1)} D) + (-1)^{q+1} \nu_{\xi} \nabla \times (\nabla^{2(q-1)} \xi \hat{\mathbf{k}}),$$

Divergence:  $D = \nabla \cdot \boldsymbol{u}$ 

Vorticity (relative):  $\xi = \hat{\mathbf{k}} \cdot (\nabla \times \mathbf{u}), \quad \hat{\mathbf{k}} = (0,0,1)$ 

$$\frac{\partial D}{\partial t} = \dots + (-1)^{q+1} \nu_D \nabla^{2q} D,$$
$$\frac{\partial \xi}{\partial t} = \dots + (-1)^{q+1} \nu_{\xi} \nabla^{2q} \xi.$$

#### Gnomonic cubed-sphere grids

Avoids the pole problem of lon-lat grids

Gnomonic: map straight lines from six panels (cube faces) onto great circles on the sphere



From Anthony Chen

## Three cubed-sphere grids

- 1. Equidistant, original grid of Sadournay (1972):
  - Equal spacings on the local panel
    = wide range of cell areas
- 2. Equiangular (Ronchi, 1995), most common, used by LFRic (UK Metoffice), SE (NCAR)

**3.** Equi-edge, an additional option (default) for FV3



## Three cubed-sphere grids

1. Equidistant, original grid of Sadournay (1972):

- 2. Equiangular (Ronchi, 1995), most common, used by LFRic (UK Metoffice), SE (NCAR)
  - Equal angles on the sphere = more uniform cells

**3.** Equi-edge, an additional option (default) for FV3



## Three cubed-sphere grids

- 1. Equidistant, original grid of Sadournay (1972):
  - Equal spacings on the local panel
    = wide range of cell areas
- 2. Equiangular (Ronchi, 1995), most common, used by LFRic (UK Metoffice), SE (NCAR)
- **3.** Equi-edge, an additional option (default) for FV3
  - More uniform cells at panel edges

See Santos (2024) thesis for more details on these grids.



#### Comparison of cubed-sphere grids:

|                                                | Equidistant | Equiangular         | Equi-edge |
|------------------------------------------------|-------------|---------------------|-----------|
| Range of cell areas                            | Largest     | Smallest            |           |
| Location of smallest cell                      | Corners     | Middle of edges     | Corners   |
| Maximum aspect ratio ( $\Delta y / \Delta x$ ) | 1.41 (√2)   | 1.41 ( $\sqrt{2}$ ) | ~1.06     |



#### Contents:

- 1. Divergence and vorticity damping
- 2. Cubed-sphere grids
- 3. Linear stability analysis
- 4. Application to CAM-FV3

Details of the linear stability analysis are found in ARXIV pre-print: *Stability analyses of divergence and vorticity damping on gnomonic cubed-sphere grids, Andrews and Jablonowski (2025).* 

## Amplification factors $\Gamma = e^{i\omega\Delta t}$

CAM defaults: Laplacian  $C_{D,2} = 0.15$  in the upper sponge, hyperviscous  $C_{D,2q} = 0.15$ 

Equi-edge is stable. 6<sup>th</sup> and 8<sup>th</sup> order equiangular are **unstable**.





## CAM-FV3 testing

• Use the baroclinic wave test case of Jablonowski, Williamson (2006)

- Run for fifteen days and identify the largest stable  $C_{D,2q}$
- Equi-edge and equiangular grids

#### CAM-FV3\* horizontal momentum equations

$$\frac{\partial u}{\partial t} = (Y + \mathcal{V}_{y,2q}) + \dots + \delta_x \mathcal{D}_x,$$
$$\frac{\partial v}{\partial t} = -(X + \mathcal{V}_{x,2q}) + \dots + \delta_x \mathcal{D}_y,$$

- X, Y transport operators implicitly diffuse  $\xi$  but not D
- *D* are divergence damping terms (required)
- $\mathcal{V}$  are vorticity damping terms (optional)

\* CAM-FV3: NCAR Community Atmosphere Model (CAM), run with the finite-volume cubed-sphere (FV3) dynamical core.

#### CAM-FV3 divergence damping

$$\frac{\partial u}{\partial t} = (Y + \mathcal{V}_{y,2q}) + \dots + \delta_x \mathcal{D}_x,$$
$$\frac{\partial v}{\partial t} = -(X + \mathcal{V}_{x,2q}) + \dots + \delta_x \mathcal{D}_y,$$

- X, Y transport operators implicitly diffuse  $\xi$  but not D
- *D* are divergence damping terms (required)
- $\mathcal{V}$  are vorticity damping terms (optional)

## Divergence damping in CAM-FV3

|                                    | Equi-edge |       |       |       | Equiangular |       |       |       |
|------------------------------------|-----------|-------|-------|-------|-------------|-------|-------|-------|
|                                    | 2nd       | 4th   | 6th   | 8th   | 2nd         | 4th   | 6th   | 8th   |
| Linear stability limit             | 0.289     | 0.204 | 0.182 | 0.172 | 0.236       | 0.167 | 0.148 | 0.140 |
| Default CAM (monotonic), C192      | 0.291     | 0.204 | 0.182 | 0.172 | 0.239       | 0.169 | 0.151 | 0.142 |
| Virtually-inviscid unlimited, C192 | 0.285     | 0.200 | 0.180 | 0.170 | 0.234       | 0.167 | 0.149 | None  |

• Equi-edge can use stronger divergence damping.

## Divergence damping in CAM-FV3

|                                    | Equi-edge |       |       |       | Equiangular |       |       |       |
|------------------------------------|-----------|-------|-------|-------|-------------|-------|-------|-------|
|                                    | 2nd       | 4th   | 6th   | 8th   | 2nd         | 4th   | 6th   | 8th   |
| Linear stability limit             | 0.289     | 0.204 | 0.182 | 0.172 | 0.236       | 0.167 | 0.148 | 0.140 |
| Default CAM (monotonic), C192      | 0.291     | 0.204 | 0.182 | 0.172 | 0.239       | 0.169 | 0.151 | 0.142 |
| Virtually-inviscid unlimited, C192 | 0.285     | 0.200 | 0.180 | 0.170 | 0.234       | 0.167 | 0.149 | None  |

- Equi-edge can use stronger divergence damping.
- Equiangular sixth- and eighth-orders are unstable with CAM default  $C_D = 0.15$ .

## Divergence damping blow-up locations

OMEGA850: Vertical pressure velocity (Pa/s) at 850 hPa.

Using 6<sup>th</sup>-order divergence damping with  $C_{D,6}$  0.001 above the stable value.

#### Divergence damping blow-up locations

OMEGA850: Vertical pressure velocity (Pa/s) at 850 hPa.

Using 6<sup>th</sup>-order divergence damping with  $C_{D,6}$  0.001 above the stable value.



#### CAM-FV3 vorticity damping

$$\frac{\partial u}{\partial t} = \left(Y + \mathcal{V}_{y,2q}\right) + \dots + \delta_x \mathcal{D}_x,$$
$$\frac{\partial v}{\partial t} = -\left(X + \mathcal{V}_{x,2q}\right) + \dots + \delta_x \mathcal{D}_y,$$

- X, Y transport operators implicitly diffuse  $\xi$  but not D
- *D* are divergence damping terms (required)
- $\mathcal{V}$  are vorticity damping terms (optional)

## Vorticity damping in CAM-FV3

1. Vorticity limits are well below linear theory, due to implicit transport diffusion.

|                         | Equi-edge |       |       |       |  |  |
|-------------------------|-----------|-------|-------|-------|--|--|
| Grid resolution         | C         | 96    | C1    | .92   |  |  |
| Diffusion order         | 4th       | 6th   | 4th   | 6th   |  |  |
| Theoretical             | 0.203     | 0.181 | 0.204 | 0.181 |  |  |
| Default CAM (monotonic) | 0.099     | 0.114 | 0.090 | 0.107 |  |  |

## Vorticity damping in CAM-FV3

- 1. Vorticity limits are well below linear theory, due to implicit transport diffusion.
- 2. Sixth-order has a larger stability range than fourth-order.

|                         | Equi-edge |             |       |       |  |  |  |
|-------------------------|-----------|-------------|-------|-------|--|--|--|
| Grid resolution         | C         | 96          | C1    | .92   |  |  |  |
| Diffusion order         | 4th       | 6th         | 4th   | 6th   |  |  |  |
| Theoretical             | 0.203     | 0.203 0.181 |       | 0.181 |  |  |  |
| Default CAM (monotonic) | 0.099     | 0.114       | 0.090 | 0.107 |  |  |  |

## Vorticity damping in CAM-FV3: The transport scheme affects stability

3. Maximum  $C_{\xi,2q}$  depends on the horizontal transport scheme.

Monotonic = more constraints, generally more diffusive.

|                              | Equi-edge |       |       |       |  |  |  |
|------------------------------|-----------|-------|-------|-------|--|--|--|
| Grid resolution              | C         | 96    | C1    | .92   |  |  |  |
| Diffusion order              | 4th       | 6th   | 4th   | 6th   |  |  |  |
| Theoretical                  | 0.203     | 0.181 | 0.204 | 0.181 |  |  |  |
| Lin monotonic                | 0.097     | 0.113 | 0.087 | 0.104 |  |  |  |
| Intermediate unlimited       | 0.098     | 0.113 | 0.089 | 0.106 |  |  |  |
| Default CAM (monotonic)      | 0.099     | 0.114 | 0.090 | 0.107 |  |  |  |
| Virtually-inviscid unlimited | 0.104     | 0.116 | 0.094 | 0.108 |  |  |  |
| Huynh monotonic              | 0.105     | 0.119 | 0.098 | 0.113 |  |  |  |

Hypothesis: Can this indicate the implicit diffusion from transport?

#### Key Conclusions

- Equi-edge can use stronger divergence damping than equiangular
  - CAM-FV3 defaults are unstable for equiangular (sixth- and eighth-orders)!

#### **Conclusions**

- Equi-edge can use stronger divergence damping than equiangular
  - CAM-FV3 defaults are unstable for equiangular (sixth- and eighth-orders)!

- Different blow-up locations on the two grids:
  - Equi-edge at panel corners
  - Equiangular at the centre of panel edges

#### **Conclusions**

- Equi-edge can use stronger divergence damping than equiangular
  - CAM-FV3 defaults are unstable for equiangular (sixth- and eighth-orders)!

- Different blow-up locations on the two grids:
  - Equi-edge at panel corners
  - Equiangular at the centre of panel edges
  - The maximum stability of vorticity damping depends on the transport scheme
    - Can this indicate implicit diffusion?

#### **Conclusions**

- Equi-edge can use stronger divergence damping than equiangular
  - CAM-FV3 defaults are unstable for equiangular (sixth- and eighth-orders)!

- Different blow-up locations on the two grids:
  - Equi-edge at panel corners
  - Equiangular at the centre of panel edges
  - The maximum stability of vorticity damping depends on the transport scheme
    - Can this indicate implicit diffusion?
  - ARXIV pre-print: Stability analyses of divergence and vorticity damping on gnomonic cubed-sphere grids, Andrews and Jablonowski (2025).

# ADDITIONAL SLIDES

#### Stencils

A higher order of damping requires more ghost cells.



(a) Stencil for Laplacian divergence damping



(b) Stencil for fourth-order divergence damping

C- and D-grids

• For application to CAM-FV3, we use the D-grid.

• For the C-grid, the  $C_D$ ,  $C_{\xi}$  limits are swapped.





D-grid

C-grid

## Linear stability

• Introduce a grid stability function:

$$\Psi_c(x,y) = \frac{\Delta A_c}{\sin(\alpha)\Delta A_{\min}(\chi + \chi^{-1})}$$

• Then, the linear stability limit is:

$$C_{D,2q} \le 2^{1/q} \frac{\Psi_{c,\min}}{4}$$

- For vorticity damping, D-grid evaluations are used:
- $\Delta A_c$  cell areas on the cubed-sphere
- $sin(\alpha)$  is internal angle; quantifies non-orthogonality



•  $\Delta A_{min}$  the smallest cell area •  $\chi = \frac{\Delta y}{\Delta x}$  is the cell aspect ratio

#### Grid stability function

Minimum value for the equi-edge grid:  $\frac{1}{\sqrt{3}} \approx 0.577$ 

Minimum value for the equiangular grid:  $\frac{\sqrt{2}}{3} \approx 0.471$ 

Ratio is  $\sqrt{\frac{2}{3}} \approx 1.22$ 

There is a larger range of stable coefficients on the equi-edge grid.

$$C_{D,2q} \le 2^{1/q} \frac{\Psi_{c,\min}}{4}$$

## Divergence damping in CAM-FV3

Compare five transport schemes:

Two unlimited, three monotonic.

|                                    | Equi-edge |       |       |       | Equiangular |       |       |       |
|------------------------------------|-----------|-------|-------|-------|-------------|-------|-------|-------|
|                                    | 2nd       | 4th   | 6th   | 8th   | 2nd         | 4th   | 6th   | 8th   |
| Linear stability limit             | 0.289     | 0.204 | 0.182 | 0.172 | 0.236       | 0.167 | 0.148 | 0.140 |
| Default CAM (monotonic), C96       | 0.295     | 0.206 | 0.184 | 0.174 | 0.242       | 0.171 | 0.153 | 0.144 |
| Lin monotonic, C96                 | 0.295     | 0.206 | 0.184 | 0.174 | 0.241       | 0.171 | 0.152 | 0.144 |
| Huynh monotonic, C96               | 0.294     | 0.206 | 0.184 | 0.174 | 0.242       | 0.171 | 0.153 | 0.144 |
| Virtually-inviscid unlimited, C96  | 0.296     | 0.203 | 0.183 | 0.173 | 0.241       | 0.169 | 0.151 | 0.143 |
| Intermediate unlimited, C96        | 0.291     | 0.203 | 0.182 | 0.173 | 0.242       | 0.171 | 0.152 | 0.144 |
| Default CAM (monotonic), C192      | 0.291     | 0.204 | 0.182 | 0.172 | 0.239       | 0.169 | 0.151 | 0.142 |
| Virtually-inviscid unlimited, C192 | 0.285     | 0.200 | 0.180 | 0.170 | 0.234       | 0.167 | 0.149 | None  |

## Mixed-order divergence damping

$$\frac{\partial D}{\partial t} = \dots + \nu_{D,2} \nabla^2 D + (-1)^{q+1} \nu_{D,2q} \nabla^{2q} D$$

Fix Laplacian coefficient,  $C_{D,2} = 0.05$ , then find maximum  $C_{D,2q}$ 

| Single-order                 | Equi-edge |       |       |       | Equiangular |       |       |                 |
|------------------------------|-----------|-------|-------|-------|-------------|-------|-------|-----------------|
|                              | 2nd       | 4th   | 6th   | 8th   | 2nd         | 4th   | 6th   | $8 \mathrm{th}$ |
| Linear stability limit       | 0.289     | 0.204 | 0.182 | 0.172 | 0.236       | 0.167 | 0.148 | 0.140           |
| Default CAM (monotonic), C96 | 0.295     | 0.206 | 0.184 | 0.174 | 0.242       | 0.171 | 0.153 | 0.144           |

| Mixed-order                     | E E   | Cqui-edg | e               | Equiangular |       |                 |  |
|---------------------------------|-------|----------|-----------------|-------------|-------|-----------------|--|
| Additional hyperviscosity order | 4th   | 6th      | $8 \mathrm{th}$ | 4th         | 6th   | $8 \mathrm{th}$ |  |
| Linear stability limit          | 0.185 | 0.171    | 0.164           | 0.148       | 0.137 | 0.132           |  |
| Default CAM (monotonic)         | 0.185 | 0.171    | 0.164           | 0.150       | 0.139 | 0.134           |  |

|                              |       | Equi  | -edge |       | Equiangular |       |       |       |
|------------------------------|-------|-------|-------|-------|-------------|-------|-------|-------|
| Grid resolution              | C96   |       | C192  |       | C           | 96    | C192  |       |
| Diffusion order              | 4th   | 6th   | 4th   | 6th   | 4th         | 6th   | 4th   | 6th   |
| Theoretical                  | 0.203 | 0.181 | 0.204 | 0.181 | 0.167       | 0.149 | 0.167 | 0.149 |
| Lin monotonic                | 0.097 | 0.113 | 0.087 | 0.104 | 0.110       | 0.113 | 0.107 | 0.111 |
| Intermediate unlimited       | 0.098 | 0.113 | 0.089 | 0.106 | 0.110       | 0.113 | 0.107 | 0.111 |
| Default CAM (monotonic)      | 0.099 | 0.114 | 0.090 | 0.107 | 0.110       | 0.113 | 0.107 | 0.111 |
| Virtually-inviscid unlimited | 0.104 | 0.116 | 0.094 | 0.108 | 0.110       | 0.113 | 0.107 | 0.111 |
| Huynh monotonic              | 0.105 | 0.119 | 0.098 | 0.113 | 0.110       | 0.113 | 0.107 | 0.111 |

## Computing $sin(\alpha)$

$$\hat{\mathbf{e}}_{ij} = rac{\mathbf{p}_i \times \mathbf{p}_j}{||\mathbf{p}_i \times \mathbf{p}_j||}.$$

$$\alpha_{jik} = \arccos(\hat{\mathbf{e}}_{ij} \cdot \hat{\mathbf{e}}_{ik}).$$

$$\alpha = \frac{1}{4}(\alpha_{412} + \alpha_{123} + \alpha_{234} + \alpha_{341}).$$

