

Institute for a Sustainable Future

## Investigating the Physical State of the Modeled Eocene Ocean After Full Equilibration

•Adam Aleksinski •CESM Paleoclimate WG, 11 June 2025







(NSF Grant #1942059)

#### DeepMIP

- The Deeptime Model Intercomparison Project: Seeks to compare simulation performance across many GCMs used by the paleoclimate community (Lunt et al., 2017)
- DeepMIP simulations need to be run for at least 1,000 years and have reasonably stable surface energy balance to be considered equilibrated



#### DeepMIP

- Required runtime is adequate for a stable surface climate, but not for deep ocean equilibration
- This could be a problem if DeepMIP-compliant modeling research is used in long-term ocean circulation studies

What changes if a DeepMIP simulation continued out until the ocean is fully ventilated?

#### The iCESM Model

Based on ver. 1.2 of the Community Earth Systems Model (Hurrell et al., 2013)

 Isotope tracing added to POP2 and CICE functionality (Brady et al., 2019)

| Component Function | Component Used                      |
|--------------------|-------------------------------------|
| Atmosphere         | Community Atmosphere Model 5 (CAM5) |
| Sea Ice            | Community Ice CodE (CICE)           |
| Land               | Community Land Model 2 (CLM2)       |
| Ocean              | Parallel Ocean Program 2 (POP2)     |
| Runoff             | River Transport Model (RTM)         |

| Parameter                                        | Boundary Condition                                                             |
|--------------------------------------------------|--------------------------------------------------------------------------------|
| Resolution                                       | $1.9^{\circ} \times 2.5^{\circ}$ atmosphere, nominal $1^{\circ}$ ocean/sea ice |
| Geography/Bathymetry                             | From Zhu et al. (2020) simulation, originally from Herold et al. (2014)        |
| pCO <sub>2</sub>                                 | 3x preindustrial levels, from Zhu et al. (2020) simulation                     |
| Nd composition of runoff and continental margins | Adapted from Jeandel et al. (2007)                                             |
| Nd composition of dust                           | Adapted from Tachikawa et al. (2003)                                           |
| Dust flux in POP2                                | Adapted from dust burden output of Zhu et al. (2020) simulation                |

## The iCESM Model

- Continuation of iCESM run performed in Zhu et al. (2020)
- Case already at surface equilibrium
- Prescribed neodymium distribution based on Jeandel et al. (2007) and Tachikawa et al al. (2003)

| <b>Component Function</b> | Component Used                      |
|---------------------------|-------------------------------------|
| Atmosphere                | Community Atmosphere Model 5 (CAM5) |
| Sea Ice                   | Community Ice CodE (CICE)           |
| Land                      | Community Land Model 2 (CLM2)       |
| Ocean                     | Parallel Ocean Program 2 (POP2)     |
| Runoff                    | River Transport Model (RTM)         |

| Parameter                                        | Boundary Condition                                                             |
|--------------------------------------------------|--------------------------------------------------------------------------------|
| Resolution                                       | $1.9^{\circ} \times 2.5^{\circ}$ atmosphere, nominal $1^{\circ}$ ocean/sea ice |
| Geography/Bathymetry                             | From Zhu et al. (2020) simulation, originally from Herold et al. (2014)        |
| pCO <sub>2</sub>                                 | 3x preindustrial levels, from Zhu et al. (2020) simulation                     |
| Nd composition of runoff and continental margins | Adapted from Jeandel et al. (2007)                                             |
| Nd composition of dust                           | Adapted from Tachikawa et al. (2003)                                           |
| Dust flux in POP2                                | Adapted from dust burden output of Zhu et al. (2020) simulation                |

• Using ideal age as main indicator of ocean mixing

Original simulation: 2,200 year runtime

Continued simulation: 7,000 year runtime (+4,800 years added)

> Take note of this part of the North Pacific basin







• Using ideal age as main indicator of ocean mixing

Original simulation: 2,200 year runtime

Continued simulation: 7,000 year runtime (+4,800 years added)





Comparing to classic metrics of physical equilibration

- Temperature? Stable after ~3000 years runtime
- Salinity? Stable after ~3250 years runtime

Both significantly undershoot the actual equilibration age



Comparing to classic metrics of physical equilibration

- Temperature? Stable after ~3000 years runtime
- Salinity? Stable after ~3250 years runtime

Both significantly undershoot the actual equilibration age



## Lack of PMOC?

- Output from Zhu et al. (2020) simulation had PMOC, but it stagnated over the course of the continuation case
- Suggesting that modeled PMOC presence is physically unstable
- Analysis of water mass transformation needed to more closely examine density flux



#### Deep Ocean Circulation vs. Global Climate

- Compared to Zhu et al. (2020): Shut down PMOC, change in regional SSTs
  - North Pacific becomes colder, consistent with reduced heat transport capacity
- However Global mean climate is relatively unchanged!
  - GMST decreases by 0.457° C

| AMWG<br>diagnostic<br>variable | Original<br>Run | Continuation | Difference |
|--------------------------------|-----------------|--------------|------------|
| TS                             | 298.935         | 298.478      | -0.457 °C  |
| TS_LAND                        | 294.174         | 293.495      | -0.679 °C  |
| PRECT                          | 3.857           | 3.830        | -0.027 m/s |
| PRECT_LAND                     | 3.154           | 3.153        | -0.001 m/s |
| PRECT_OCEAN                    | 4.114           | 4.080        | -0.034 m/s |

# Comparison with circulation in other DeepMIP models

- Zhang et al. (2022) compared ocean circulation patterns among several DeepMIP-compliant GCM simulations, including CESM1.2
  - Simulation runtime varied between 2,000 years and 7,500 years
- Many displayed PMOC in both north and south sectors, which are both absent from my continuation case

| Model      | Simulations<br>(Atm. pCO <sub>2</sub> ) | Duration<br>(kyr) |
|------------|-----------------------------------------|-------------------|
| CESM1.2    | PI, 1x, 3x, 6x,<br>9x                   | 2                 |
| COSMOS     | PI, 1x, 3x, 4x                          | 7                 |
| IPSL-CM5A2 | PI, 1.5x, 3x                            | 4                 |
| MIROC4m    | PI,1x,2x,3x                             | 5                 |
| HadCM3B    | PI, 1x, 2x, 3x                          | 7.4               |
| HadCM3BL   | PI, 1x, 2x, 3x                          | 7.5               |
| NorESM1-F  | PI, 2x, 4x                              | 2.1               |
| GFDL-CM2.1 | PI, 1x, 2x, 3x,<br>4x, 6x               | 6                 |



From: Zhang et al. (2022)

#### Conclusions

- Simply continuing the Zhu et al. (2020) simulation unaltered caused the case's PMOC to shut down
- Despite a massive overhaul of deep ocean circulation, global climate did not experience much significant change
- More care should be taken when using DeepMIP simulations for ocean circulation studies — we can better understand past ocean dynamics if we know that our simulations are fully equilibrated!

## Thank you for listening!

