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Context

Abramowitz et al. (2024) led the
Plumber 2 MIP to evaluate the
performance of models on turbulent
fluxes (latent heat and sensible heat).

It included 20 models and 7 benchmarks.

Of the benchmarks,

* Simplest: linear regression of the
fluxes using short-wave radiation.

 Complex: LSTM

The models used default parameters (i.e.,
no calibration) and were evaluated using
the entire period.
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Context

Plumber 2 results show that:

 All state-of-the-art models are
outperformed by simple
regression for sensible heat (Qh)

e The LSTM benchmark for latent
heat (Qle) outperforms all
models

* There is no apparent relation
between the level of complexity
of the model and its
performance.
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Independent normalised metric value (iINMV) over sites and metrics (lower is better)
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Context

Abramowitz et al. (2024) concluded:

This raises the question of whether LMs are too complex for the level of fidelity they provide. It’s at least theoretically possible,
for example, that an LM i1s perfect, but because we are unable to precisely prescribe its parameters for these site simulations

(and global simulations) we are actively hindering its ability to get the right result. What the out-of-sample empirical models

This study addresses this challenge and focuses on:
(a) Identify the key parameters that control Qle and Qh

(b) Estimate optimal parameters to improve the performance of Qh
and Qle
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Methodology
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* To explore different modeling decisions, we -
utilized the Structure for Unifying Multiple
Modeling Alternatives (SUMMA, Clark et al,,
2015)

 Simulate the conservation of mass and
energy. i

* Multiple modeling options for specific =]
processes

« Multiple state-of-the-art numerical solvers for DIl d
the equations, including the SUNDIALS suite.

* Flexibility to adjust model parameters.

e Multiple options to represent horizontal and
vertical heterogeneity.

Clark et al. (2021)
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Methodology

* Sensitivity analysis (SA) and The plumber 2 towers were filtered from 170 to 124:
calibration were evaluated against « Removed stations with less than 2 years
measured-only fluxes (i.e., no-gap- * Removed stations with unreliable observed data

filled or energy corrected).
* Data divided into:

 Calibration: First 50% of the data o
» Evaluation: Second 50% of the data - by
. . . ° g °
* Objective metric: KGE S * At
| s sl g o3 .ot
| 2 _ > ® ) .
KGE =1—/(r— 1)+ (a— 1) +(8—1)° , :
where: .' .
i s ? o
r: is the Pearson correlation coefficient o Closed Shrublands g y e 3
Croplands °o°.
a : is a term representing the variability of prediction S eerareen rondlodt foroct
errors : I(E}\::;glr:s;sl\leedleleaf Forest
. . e Mixed Forests
ﬁ; is a bias term o  Open Shrublands

e Permanent wetlands
e Savannas 6

CESM Workshop, NCAR, June 9, 2025 | ignacio.aguirre@ucalgary.ca o Woody Savannas



Sensitivity analysis

Determined min and max
bounds for each parameter.

Generated 4000 LHS samples
to evaluate all 130 parameters.

Ran SUMMA.
Evaluated Qle and Qh

Determined first-order

sensitivity using the variance-
based method of PyVISCOUS
(Liuetal.,, 2024)

Identified parameters that
account collectively >85% of
variance
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Latent heat
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Calibration methodology: emulators

There are two kinds of emulators:

* Aim to reproduce the time-series of fluxes directly (i.e., by-passing the model parameters): Bennett et al.
(2024); Maxwell et al. (2021).

* Aim to reproduce the dynamics of parameters and objective functions (i.e., not reproducing the timeseries of
fluxes): Tang et al. (2024 ), Gong et al. (2016), and Herrera et al. (2022). In this case, the model reproduces
the fluxes, and the emulator is used as a surrogate during calibration.

Final model evaluation is performed using the process-based model, not the emulator.

During calibration:
00:45 min/run ‘w 7

> Process-based Model

0.072 seg/run A of‘ /

Emulator
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Step 1

Step 2

Step 3

Step 4

Calibration methodology

Define sample size :
2nd run the model Based on the work of Guoqgiang Tang, Andrew Wood,
and Sean Swenson (2024, submitted to WRR)
NiterO
l ) Add new parameters
Large sample emulator
Train emulator Q A y
l Single site emulator Parameters Attributes Metric
0 y -0]]: le- -a% ces af— _:V1_
Optimize emulator _ oo P : | Tower 1
and obtain new Parameters Metric or ... oF al - af L Vn
parameters 1 p _ i _ Z
91 01 },.1 0% ves 0]{3 a% a‘zé1 _yl_
Agptl : : , : : . : : ) : : | Tower 2
o} i18 Yn 6 - 6F ai - a‘24_ Vi
Run model with new
parameters
61 6f ax as Y1
No : :
Meet criteria? . ) ' . Tower B
Yes (=il KGE Op - Oy ag -+ 0ag Yn
v NKGE = ———
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SSE: Objective latent heat (Qle)

o SSE (Qle) . Calibration period ) Evaluation periﬁ;f!
outperforms the
linear regression
and LSTM
benchmark for Qle.

The focus of this
experiment is latent heat.

T o= / SSE results

o SeleCtlng the beSt 0.0 __ : = SSE (Qle) based on highest KGE (Qle)
: : : 0.0 02 04 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 — SSE (Qle) based on highest KGE (Qle & Qh)

SlmUIatIOH IS key LQL' KGE (Latent heat) KGE (Latent heat) Reference

and can be O

Sl —— SUMMA default
performed on: -—- Linear regression ref. (Plumber 2)
. === LSTM ref. (Plumber 2)
* Only the flux that is
being calibrated

* Both fluxes.

These are the result of
sensible heat, while
calibrating latent heat

0.0 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

KGE (Sensible heat) KGE (Sensible heat)
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SSE: Objective sensible heat (Qh)

Calibration period Evaluation period

’ P a These are the result of
latent heat, while
calibrating sensible heat

» SSE (Qh)
outperforms the
simple regression
and LSTM reference
in the calibration
period, but not SSE results |
during the oo A 02 0 08 o 00 02 02 o6 08 1o — :E Eg:; 32223 on EIEEEZE Egi iﬁl’&om
evaluation period.

KGE (Latent heat) KGE (Latent heat)
Reference

ECDF

— SUMMA default

d The performance Of === Linear regression ref. (Flumber 2)
. . === LSTM ref. (Plumber 2)
SSE (Qh) in latent
heat is limited.

The focus of this
experiment is sensible heat.

0.0 T T T T T
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SSE: Objective latent and sensible heat

* SSE (Qle & Qh) was
built weighing each
flux 50%

 Ityields
performance
comparable to LSTM
for Qle and similar

to linear regression
for Qh.
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LSE: Objective latent heat

Calibration period

Evaluation period
-

-
-

* LSE (Qle) outperforms
the linear regression
and LSTM references.

The focus of this
experiment is latent heat.

* We evaluated using ~50
parameters and ~30
parameters:

LSE results

-
=

———— = LSE (Qle) | highest KGE (Qle) | ~ 50 params

(
0.0 LSE (Qle) | highest KGE (Qle & Qh | ~ 50 params
. . . 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 — LSE (Qle} | highest KGE (Qle) | ~ 30 params
« Simulations with ~50 LS KGE (Latent heat KGE (Latent heat) LSE (Qle) | highest KGE (Qle & Qh | ~ 30 params
parameters have better O Reference

performance in KGE retenee
(Qle) only and KGE (Qle , _ efau

=== Linear regression ref. (Plumber 2)
& Qh)

=== LSTM ref. (Flumber 2}
* The emulator approach

does not exhibit
saturation with 50
parameters. The point of
saturation (i.e., achieving
the same performance
with more parameters) 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
has not been defined yet KGE {Sensible heat) KGE (Sensible heat)

These are the result of
sensible heat, while
calibrating latent heat
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LSE: Objective sensible heat

Calibration period

* LSE (Qh) outperforms
the references on the
calibration period, but
not in the evaluation
period.

1.0 4

* The results align with

Evaluation period
-

- o

T T T 1
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Plumber 2, which
shows that models are

ECDF

T T T
0.4 0.6 0.8

1
1.0

limited in capturing
Qh.

* Asobserved in LSE
(Qle), the LSE with
~50 parameters
outperforms the LSE
with ~30 parameters.
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0.6 0.8 1.0

T
0.4
KGE (Sensible heat)
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KGE (Sensible heat)

1
1.0
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These are the result of
latent heat, while
calibrating sensible heat

LSE results

= LSE (Qh} | highest KGE (Qh) | ~ 50 params

LSE (Qh) | highest KGE (Qle & Qh | ~ 50 params
= LSE (Qh} | highest KGE (Qh) | ~ 30 params

LSE (Qh) | highest KGE (Qle & Qh | ~ 30 params

Reference
— SUMMA default

=== Linear regression ref. (Plumber 2)
=== LSTM ref. {(Plumber 2}

The focus of this
experiment is sensible heat.




LSE: Objective latent and sensible heat

* LSE (Qle & Qh) was
built weighing each
flux 50%

* For latent heat, it
outperforms the
LSTM on the
calibration and
validation periods.

* For the sensible
heat, it outperforms
the benchmarks
only in calibration,
similar to LSE(Qh).
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The focus of this
experiment is on both
latent heat and sensible
heat

SSE results
= LSE (Qle & Qh) based on highest KGE {Qle & Qh)
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——- Linear regression ref. (Plumber 2)
=== LSTM ref. (Plumber 2)

The focus of this
experiment is on both
latent heat and sensible
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Step 1

Step 2

Step 3

Step 4

Define sample size
and run the model

N iter0 l

Train emulator

|

Optimize emulator
and obtain parameter(s) by
selecting the best(s) eKGE

Noml

Run model with
suggested parameters
and estimate errors

Calibration methodology:
regionalization

Test the emulator on flux towers not included in the training data

V) A Y

Train emulator and optimize
the parameters for target
tower

tower

=

Un-seen tower

N S

missing

Based on the work of Guoqgiang Tang, Andrew Wood, and Sean Swenson
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LSE applied to regionalization (Obj: Qle)

G3: 20% G4: 20% G5: 20%
of towers of towers of towers

To select the best performance: G1: 20%
of towers

* Check the best emulated
metric: PUB approach.

Train the emulator on 80% of the towers, test on the 20% unseen by the emulator
* Check the best metric from
the hydrological model post-

facto analysis lo- Calibration pEFID’d ) Evaluation period

These two options differ in the

error between the KGE %7 frsﬂ:cm
estimated by the emulator vs — PUB
the KGE estimated by SUMMA. Rl
=} Reference
The emulator often estimates s 0.4 4 —— SUMMA default
higher values than SUMMA, T tg‘f;rr;g{r;ffrf:;j;‘P'“”"ber2’
which has also been observed -

in Tang et al. (2024, submitted
to WRR) and Farahani et al. 00 . | | | | . I | |
(2 024’ Submitted to HESS) . 0.0 0.2 0.4 0.6 0.8 L0 0.0 0.2 0.4 0.6 0.8 1.0

KGE (Latent heat) KGE (Latent heat)
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Summary

Qle and Qh calibrated can
outperform reference
benchmarks.

. 5%E outperforms SSE for Qle and

e LSE trained with ~50
arameters outperforms LSE
~30 params)

* The LSE method provides good
results for regionalization. Thus,
the emulator can be used to find
parameters for towers not
included in the training dataset.

* There are limitations on
capturing Qh.
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T T T
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KGE (Latent heat)

LATENT HEAT (Qle)

Calibrated
—— SSE (Qle)
—— SSE (Qle & Qh)
— LSE (Qle)
LSE (Qle & Qh)

Reference

—— SUMMA default params
=== Linear regression benchmark
=== LSTM benchmark

ECDF

Calibration period

Evaluation period

T T T
0.2 0.4 0.6
KGE (Sensible heat)

T T T
0.4 0.6 0.8
KGE (Sensible heat)

SENSIBLE HEAT (Qh)

Calibrated
—— SSE (Qh)
—— SSE (Qle & Qh)
—— LSE (Qh)
LSE (Qle & Qh)

Reference

—— SUMMA default params
=== Linear regression benchmark
=== LSTM benchmark
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Future work

* Using SUMMA:

* Evaluate the impact of the multiple
decisions used in the emulator (e.g.,
number of iterations)

* Evaluate more applications of
regionalization, such as train in 20%, and
evaluate over 80%

* Evaluate ways to improve results on
sensible heat

* Apply this method to the same

PLUMBER2 towers using CLM5
(Lawrence et al., 2019)
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