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Data Storage for ESMs
● Climate simulations such as the Community 

Earth System Model (or CESM) have been used 
in large-scale projects such as the Coupled 
Model Intercomparison Project Phase 6.

● The total size of the output for an ensemble is 
massive (multiple petabytes).

● Goal: reducing the volume of these datasets 
without systematically altering them in any way 
that could affect scientific conclusions.

● We do not know in advance what kind of 
analysis the climate scientists will be performing 
on the data - or what the societal implications 
may be.
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Reducing Data Size
● Lossless compression algorithms do not 

effectively reduce data volume of 
floating-point data.

● As a result, scientists are forced to 
constrain the size of their models.

● Using lossy compressors can greatly 
reduce the data size, but this comes at a 
cost of data quality – so a tradeoff must be 
made.

3



MINES.EDU

Compressing Data Safely
Scientists are understandably concerned about compression affecting the results of their analysis. 
We take the following steps to reduce the potential biases introduced in the data:

○ Collaboration with compression algorithm creators to reduce artifacts in the data.
○ Treating each climate variable individually to preserve spatiotemporal properties in a 

computationally efficient way.
○ Working closely with application scientists, and providing tools so they can see the effects 

of compression on their analyses.
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Evaluating Compression
Quality

● Common compression metrics including RMSE, 
PSNR, and maximum error are not sufficient as they 
do not capture spatial or temporal dependencies that 
may exist in the errors. These may vary greatly 
between climate variables.

● Ensuring that compression does not adversely affect 
user analysis requires more specialized metrics 
that can be quickly computed on a dataset.
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Example:
Structural Similarity Index Measure
● Often scientific decisions are made based on visual inspection 

of data. The SSIM provides an estimate of similarity between 
two images by taking corresponding subsets of the images and 
evaluating luminance, contrast, and brightness. Then, these 
local SSIM values are averaged to reach the final mean SSIM 
value for comparing the images.
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SSIM for Data (DSSIM)

● The DSSIM calculation is 
similar to the SSIM, but 
operates directly on datasets.

● DSSIM works similarly to the 
SSIM, where 1 indicates that 
two datasets are identical.

● We can use a threshold for the 
DSSIM to determine likely 
visual indistinguishability.
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Other Metrics
Overall goal: automate the compression process while preserving scientific integrity.

Additional compression metrics:

● Pearson Correlation Coefficient
● Spatial Relative Error
● Kolmogorov-Smirnov p-value
● Real Information Content

The choice of proper metrics may be
highly dependant on the scientific 
application - these are a few examples.
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Determining “Optimal” 
Compression

● We determine “optimal” 
compression as the highest level of 
compression that passes the suite 
of metrics.

● The colored circles in the right 
figure indicate the dataset 
considered “optimal” under different 
metric threshold values, in this case 
for the DSSIM.

● This process is repeated for the 
other metrics and the lowest 
compression level over all metrics 
is taken as optimal.

9



MINES.EDU

Practical Compression Challenges

● We have thousands of variables and large volumes of data. 
● Each climate variable has different characteristics, and characteristics may vary between time slices. 

Additionally, new variables may be output at any time. 
● To ensure the highest level of compression possible, we would need to try many different compression 

algorithms and parameter combinations separately for each individual time slice of output data.
● We are working on creating a statistical model that takes in data (or derived quantities thereof) of new or 

preexisting climate variables and predicts the ideal compression settings. This will be used as a baseline 
against which the compression can be further tweaked by application.
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ldcpy
● To compute metrics on massive spatial datasets, 

we developed a Python software package called 
ldcpy.

● This package also allows us to calculate other 
derived quantities of the data, and provides 
visualization tools.

● ldcpy design goals:
○ Interoperability with the Pangeo software 

ecosystem
○ Easy interaction through Jupyter Notebooks
○ Suitability for a wide range of data volumes 

(single time slice to many years)
○ Supports datasets in NetCDF and object 

store data formats
○ Extensible analysis and plotting capabilities
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Label spread by variable

● For each climate variable, we 
look at single time slices of the 
spatial field and classify them 
according to their optimal 
compression level.

● The result are optimal 
compression levels for every 
climate variable, with varying 
level distributions for each 
climate variable.
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Classifying Datasets

● The approach described previously only 
works for small datasets.

● We can treat this as a supervised 
learning problem and try to model the 
optimal level based on dataset features.

● The model is intended to be 
metric-agnostic.
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Generating features using ldcpy

● We use explicit feature models, such as 
random forest models, to predict optimal 
compression levels and indicate which 
features are relevant to making 
predictions.

● We also use implicit feature models, in 
this case CNNs, as they are designed to 
capture regularities in image data.

14



MINES.EDU

● Results using basic statistical learning models are mixed.
● Higher accuracy for predicting a new timeslice of a preexisting 

climate variable versus predicting a timeslice for a previously 
unforeseen climate variable.

● Major issues: difficult to discern additional features, require 
more data to fully explore the feature space than the 183 
variables we have. 

Early Results

Mean test classification matrix after fitting a 
random forest to all the training data except 

a single climate variable, for two (zfp) 
parameter sets: mean accuracy: 74.5%
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Accuracy can drop significantly when training 
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Continuing Work
● We are looking at using local spatial features to determine optimal 

compression levels, increasing the amount and variety of input 
training data.

● Training time / number of models to train is a major drawback. Improving 
code parallelism is a big focus.

● Development of a multi-stage model that first predicts the optimal 
compression algorithm, and then selects the appropriate compression 
parameter for the algorithm.
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Thank You!
Further Reading: 

● A. H. Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne, “Toward a multi-method approach: Lossy data 
compression for climate simulation data,” in International Conference on High Performance Computing. Springer, 
2017, pp. 30–42.

● A. Pinard, A. H. Baker, and D. M. Hammerling, “A statistical approach to obtaining a data structural similarity index 
cutoff threshold,” National Center for Atmospheric Research, Tech. Rep. NCAR/TN-568+STR, 2021.

● “Examining variations in the optimal compression level of spatiotemporal datasets determined using the data 
structural similarity index measure (dssim),” National Center for Atmospheric Research, Tech. Rep. 
NCAR/TN-570+STR, 2021.

● A. Pinard, D. M. Hammerling, and A. H. Baker, “Assessing differences in large spatio-temporal climate datasets with a 
new python package,” in 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 2699–2707.
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