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Data Storage for ESMs

e Climate simulations such as the Community

Ozone layer Solar energy

Upper-level winds

Earth System Model (or CESM) have been used I . <

in large-scale projects such as the Coupled T i o SN Y YR e, -

Model Intercomparison Project Phase 6. e _ i
e The total size of the output for an ensemble is _ e T RS

massive (multiple petabytes). and tamparature Reatisic o = =
e (Goal: reducing the volume of these datasets N emm— -~ ecosystems e

without systematically altering them in any way N , Surface winds o=

that could affect scientific conclusions. L e iy i
e We do not know in advance what kind of |

analysis the climate scientists will be performing \ Ocean s

on the data - or what the societal implications e

may be.
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Reducing Data Size

NCAR Cheyenne data storage usage

1001 P
o e N
e Lossless compression algorithms do not o0 /,/"'/ //_\\-_/"/ N W
effectively reduce data volume of _ ! L
floating-point data. % 60 - j/ /'/
e As a result, scientists are forced to § S A
constrain the size of their models. S 40 2
e Using lossy compressors can greatly B ,"
reduce the data size, but this comes at a ] /' —-- /glade/project (10PB)
. —-—~- /glade/scratch (15PB)
cost of data quality — so a tradeoff must be o] —— campaign storage (92PB)
made.  Emums S i
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Compressing Data Safely

Scientists are understandably concerned about compression affecting the results of their analysis.
We take the following steps to reduce the potential biases introduced in the data:

o Collaboration with compression algorithm creators to reduce artifacts in the data.

o Treating each climate variable individually to preserve spatiotemporal properties in a
computationally efficient way.

o Working closely with application scientists, and providing tools so they can see the effects
of compression on their analyses.

orig: PSL: mean = 100771.82 zfp_p_8: PSL: mean = 100741.93
- - , z
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Evaluating Compression
Quality

e Common compression metrics including RMSE,
PSNR, and maximum error are not sufficient as they
do not capture spatial or temporal dependencies that
may exist in the errors. These may vary greatly
between climate variables.

e Ensuring that compression does not adversely affect
user analysis requires more specialized metrics
that can be quickly computed on a dataset.
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Example:
Structural Similarity Index Measure

e Often scientific decisions are made based on visual inspection
of data. The SSIM provides an estimate of similarity between
two images by taking corresponding subsets of the images and
evaluating luminance, contrast, and brightness. Then, these
local SSIM values are averaged to reach the final mean SSIM
value for comparing the images.

Definition (SSIM)
SSIM(xi, i) = S1(xi, ¥i)Sa2(xi, ¥i),

(2tu’XiN’Yi itz Cl) (2Uxm + C2)
(b3 +p3 + G1)’ (0% + 05+ C2)

52(xi1 yj) =

Sl(Xi, YJ) =

M
SSIM(X, Y) = % S SSIM(x;,yi)
=1
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SSIM for Data (DSSIM)

Compression ratio (solid left) and mean DSSIM (dashed, right) versus compression level

161 =TT S I - s + 110

e The DSSIM calculation is = T

similar to the SSIM, but * , e

operates directly on datasets. 12] x i o
e DSSIM works similarly to the o] Ve P v _

SSIM, where 1 indicates that < N —— 06 %A

two datasets are identical. -+~ PRECT DSSIM <
e We can use a threshold for the ° il 04

DSSIM to determine likely 41 & cousosan

visual indistinguishability. | s

p=6 p=8 p=10 p=13 p=14 p=16 p=18 p=20 p=22 p=24
Compression Parameter
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Other Metrics

Overall goal: automate the compression process while preserving scientific integrity.

Additional compression metrics: pearson correlation coefficient 1
e Pearson Correlation Coefficient ks p-value 1
e Spatial Relative Error spatial relative error(% > 0.0001) 5.20833
e Kolmogorov-Smirnov p-value
e Real Information Content spatial relative error (% > 0.001) 0

spatial relative error (% > 0.01) 0

The choice of proper metrics may be max spatial relative error 0

highly dependant on the scientific

L data SSIM 0.999514
application - these are a few examples.
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Variable
= T - 79 LHFLX Q500 TS
Determining “Optimal” |possi
. oSN = = ZFP_p6 O 12.8
Compression = - = e 0107
@ [ ZFP_pé O 115 [ s Q
ZFP_p10 8.5
e We determine “optimal” Uncompresss<l " R B b
compression as the highest level of 0.9 == =
_ _ = = =y —  ZFP_p10 o e D Qs.9
compression that passes the suite | Aggressive — — — e === - - - S e i
of metrics. = B | ZEP pia ‘
e The colored circles in the right ZFP_p12 S *8 5 L
: - k= | P : L
figure indicate the dataset e = = zees (30)

H 11 H L] H H [ - [ _p 9y
considered “optimal” under different Middle groun T 2 pia - % L iy
metric threshold values, in this case 3 i I

= — _P
for the DSSIM. ZFP_p16
. . 0.999 ——  ZFP_p12 =
e This process is repeated for the R = = 3.7 = M\
other metrics and the lowest [Fossmatve s = S = = = — = = g T T T T T T T T T ZrPp20 @ e —
compression level over all metrics P N E
is taken as optimal. 0.9999 | ZFP-p20 . @ | ZFPp22 69
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Practical Compression Challenges

e \We have thousands of variables and large volumes of data.

e Each climate variable has different characteristics, and characteristics may vary between time slices.
Additionally, new variables may be output at any time.

e To ensure the highest level of compression possible, we would need to try many different compression
algorithms and parameter combinations separately for each individual time slice of output data.

e \We are working on creating a statistical model that takes in data (or derived quantities thereof) of new or
preexisting climate variables and predicts the ideal compression settings. This will be used as a baseline
against which the compression can be further tweaked by application.
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Idcpy

e To compute metrics on massive spatial datasets,
we developed a Python software package called

depy. o oo [ARRRN o< [N <ovovs [RY oo- [aAa] v [N

e This package also allows us to calculate other conoa-rorce [WOMBN DOI 105281 / ZENODO.215409079
derived quantities of the data, and provides
visualization tools. Large Data Comparison for Python
e Idcpy design goals:
o Interoperability with the Pangeo software Idcpy is a utility for gathering and plotting metrics from NetCDF or Zarr files using the Pangeo stack. It also
e cosystem contains a number of statistical and visual tools for gathering metrics and comparing Earth System Model data
. . files.
o Easy interaction through Jupyter Notebooks
SUitab”ity for a wide range of data volumes AUTHORS: Alex Pinard, Allison Baker, Anderson Banihirwe, Dorit Hammerling

(single time slice to many years)
o Supports datasets in NetCDF and object
store data formats el R e
o Extensible analysis and plotting capabilities

COPYRIGHT: 2020 University Corporation for Atmospheric Research
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Label spread by variable

zfp_level 6 8 10 12 14 16 18 20 22 24 26  never passed

variable
ABSORB 0 0 0 0 0 0 51 9 0 0 60 240
ANRAIN 360 0 0 0 0 0 0 0 0 0 0 0
1 H ANSNOW 360 0 0 0 0 0 0 0 0 0 0 0
e For each climate variable, we il d s 71 8 ° F @ v I & b om it
. . . AODDUST1 0 0 0 0 30 29 1 0 0 0 60 240
look at single time slices of the AGhDiTa o o o o o o o o o o e -
. . . AODDUST3 0 0 0 2 48 10 0 0 0 0 60 240
spatlal field and C|aSS|fy them AODVIS o 0 0 0 0 a1 19 0 0 0 60 240
. . . AQRAIN 360 0 0 0 0 0 0 0 0 0 0 0
according to their optimal AQSNOW 0 0 0 0 0o 0 0o 0 0 0 0 0
. AREI 360 0 0 0 0 0 0 0 0 0 0 0
compression level. AREL 360 0 0 0 0 0 0 0 0 0 0 0
. AWNC 360 0 0 0 0 0 0 0 0 0 0 0
e The result are optimal AWNI 3 0 0 0 0o 0 0 0 0 0 0 0
. BURDENBC 0 0 0 0 3 239 17 1 0 0 0 0
BURDENDUST 0 0 0 26 288 44 2 0 0 0 0 0
CompreSSIOn Ievels for every BURDENPOM 0 0 0 0 14 268 78 0 0 0 0 0
H 1 1 H BURDENSEASALT 0 0 0 0 0 318 41 1 0 0 0 0
climate variable, with varying s 2 & 2 2 A S S S s
H H H CDNUMC 0 0 0 0 38 318 4 0 0 0 0 0
level distributions for each CLDTOT 0 0 0 s am 0 o oo 0
. . CO2_LND 0 0 0 0 0 0 0 0 0 0 0 360
climate variable. CO2.0CN 0 0 0 0 0 0 0 0 0 0 0 360
DCQ 121 5 56 136 40 2 0 0 0 0 0 0
DTCOND 202 4 27 86 41 0 0 0 0 0 0 0
DTV 359 0 1 0 0 0 0 0 0 0 0 0
EXTINCT 0 0 0 0 0 0 51 9 0 0 60 240
FICE 334 1 2 11 12 0 0 0 0 0 0 0
FLDS 0 0 0 0 0 0 328 32 0 0 0 0
FLNS 0 0 0 0 0 360 0 0 0 0 0 0
FLNSC 0 0 0 0 0 0 360 0 0 0 0 0
FLNTC 0 0 0 0 0 0 T 353 0 0 0 0
FLUTC 0 0 0 0 0 0 3 353 4 0 0 0
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Classifying Datasets

e The approach described previously only
works for small datasets.

e \Ve can treat this as a supervised
learning problem and try to model the
optimal level based on dataset features.

e The model is intended to be
metric-agnostic.
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Climate Variables

Net Shortwave Radiation

Precipitation Rate

Relative Humidity

Sea Level Pressure

Surface Temperature

Vertical Heat Flux

-’
4
’
’

Algorithm Compression Rate

v| ZFP 1x (none)

ZFP 1.25x (~lossless)
AR 2%
ZER 100x

Al 57 1x (none)

SZ 1.25x (~lossless)
SZ 100x
™| BITGROOMING | 1x(none)

»| BIT-GROOMING 1.25x (~lossless)
BIT-GROOMING 2x
BIT-GROOMING 100x
OTHERS 1x (none)
OTHERS 1.25x (~lossless)
OTHERS 2%

OTHERS 100x
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Generating features using ldcpy

We use explicit feature models, such as
random forest models, to predict optimal
compression levels and indicate which
features are relevant to making
predictions.

We also use implicit feature models, in
this case CNNs, as they are designed to
capture regularities in image data.
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climate variable

mean importance

standard deviation

ns_con_var
ew_con_var
w_e_first_differences
w_e_first_differences_max
n_s_first_differences
n_s_first_differences_max
FFT _max_horizontal
FFT _horizontal _ratio
FFT _max_vertical
FFT _vertical_ratio
magnitude_range
magnitude_range_ew
magnitude_range_ns
entropy
real_information

0.096
0.11
0
0.11
0.055
0.053
0.049
0.056
0.049
0.051
0.041
0.066
0.016
0.11
0.14

0.050
0.065
0
0.043
0.042
0.041
0.028
0.045
0.022
0.042
0.026
0.044
0.014
0.048
0.082
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Early Results - - E - B
P-P- YA 3% EEEYM 0% | 0% | 0% | 0%
2p_p_16 98 24 27 0 0 0 0
P20 N85% | 8% | 2% | 0% | 0% | 0% | 0%
e Results using basic statistical learning models are mixed. 1 ) ; ; ; ; )
e Higher accuracy for predicting a new timeslice of a preexisting 5 “**'* | o% | o% | 0% | 0% | 0% | 0% | o%
. . . " . . . 5
climate vanab]e versus predicting a timeslice for a previously o] 0] 0l o [ o o] oo
unforeseen climate variable. E & | 0 | 0k | 04 | O | D4 | OR
e Major issues: difficult to discern additional features, require o2z | O | 0 | o [ o | o | o | o
more data to fully explore the feature space than the 183 I I T A I I
I 0 0 0 0 0 0
variables we have. dpp2t | o o | o | ow ll o
o 7 53 0 0 0 0 0
: g #p-p-26 | 9o | 18% | 0% | 0% | o% | o% | 0%
C #ip-p-14 ety 207 Mean test classification matrix after fitting a pfoup, Vet p. 6o T8 dormiZll sloaiZs ot o Theaton 25
g random forest to all the training data except Target Class
5 a single climate variable, for two (zfp) o o
gc on more than two classes.
=

zfp_p_14 zfp_p_20

Output (Predicted) Class
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Continuing Work

e \We are looking at using local spatial features to determine optimal
compression levels, increasing the amount and variety of input
training data.

e Training time / number of models to train is a major drawback. Improving
code parallelism is a big focus.

e Development of a multi-stage model that first predicts the optimal
compression algorithm, and then selects the appropriate compression
parameter for the algorithm.
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Spatial Dataset

v
Algorithm
selection
model

sz, zfp,
zfp sz

bg

!

zfp parameter
selection
model

bg parameter
selection
model

sz parameter
selection
model

y/ Compress

dataset
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Thank You!

Further Reading:

e A. H.Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne, “Toward a multi-method approach: Lossy data
compression for climate simulation data,” in International Conference on High Performance Computing. Springer,
2017, pp. 30—42.

e A.Pinard, A. H. Baker, and D. M. Hammerling, “A statistical approach to obtaining a data structural similarity index
cutoff threshold,” National Center for Atmospheric Research, Tech. Rep. NCAR/TN-568+STR, 2021.

e “Examining variations in the optimal compression level of spatiotemporal datasets determined using the data
structural similarity index measure (dssim),” National Center for Atmospheric Research, Tech. Rep.
NCAR/TN-570+STR, 2021.

e A.Pinard, D. M. Hammerling, and A. H. Baker, “Assessing differences in large spatio-temporal climate datasets with a
new python package,” in 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 2699-2707.
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