

Modulations of Atmospheric River Climatology by the Stratospheric Quasi-Biennial Oscillation

CESM Workshop Boulder, CO

Kai Huang¹, Christine Shields¹, Jadwiga Richter¹, Kirsten R. Hall², and Yuanpu Li¹

¹Climate and Global Dynamics, National Center for Atmospheric Research, Boulder, CO 80305 ²Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA 02140

June 12, 2024

I. Introduction Atmospheric River

Giemeno et al., 2014

- ➤ Long, narrow bands of enhanced water vapor transport in the troposphere. "Pineapple Express"
- Middle to higher latitudes.
- > The main agents of water resources in many costal regions.

I. Introduction Why QBO and AR?

Does the QBO's influences on the Northern Pacific AR consistent among different AR detection algorithms? Any seasonality? Also did the analysis for the other regions.

- > The QBO-MJO connection (e.g., Yoo and Son 2016).
 - amplitude & propagation
 - teleconnection patterns
- The skillful predictions of CA AR landings using QBO and MJO indices (e.g., Castellano et al., 2022, Mundhenk et al., 2022).
 - only for the boreal winter season
- ➤ QBO's impacts on the northern hemisphere winter storm tracks (e.g., Wang et al., 2017).

Martin et al., 2021

single ARDT, single season, single region.

II. Data and Method

Annual mean of the AR frequency

> ERA5 reanalysis

- 1980 to 2017
- Hourly IVT and daily atmospheric variables
- 0.25 degrees by 0.25 degrees horizontally

> QBO phase

- 3-month average of the equatorial (10S-10N) zonal-mean U50
- above (below) half standard deviation of the mean for QBOW (QBOE)

> 3 ARDTs

- GuanWaliser v2 (lenient)
- Reid500 (strict)
- Mundhenk_v3 (medium, suitable for the MJO-induced AR events, run by Dr. Kyle Nardi)

III. High Consistency among the Three ARDTs

AR frequency maps
Shading: QBOE-QBOW
Lines: QBOW seasonal mean

- > Organized differences in certain seasons over the Northern Pacific.
- High consistency for the organized differences among three selected ARDTs.

III. AR Domain Changes over the Northern Pacific

Lines: all-season-mean AR frequency Shadings: QBOE-QBOW differences

Northern Pacific (150E-150W)

III. Local Impacts around the Northern Pacific Basin

Correlations between the seasonal-mean QBO index (u50) and the domain-averaged AR frequency

- High agreement among the three ARDTs.
- > The poleward shift around the ASO.
 - ✓ increased AR in the northern Japan
 - ✓ decreased AR in the gulf of Alaska
- > The poleward shift around the FMA.
 - ✓ increased AR in the northern Japan and gulf of Alaska
 - ✓ decreased AR in the northern CA

VI. Plausible Mechanisms Background mean state changes

The QBOE JFM-season-mean background is featured by

- an anomalous z500 high centered at the northeastern Pacific
- low-level easterly (westerly) anomalies in the lower (higher) latitudes

lower (higher) AR IVT over the anomalous easterly (westerly)

Mundhenk_v3 AR IVT (shading), z500 (lines), and 700hPa wind (vectors)

VI. Plausible Mechanisms QBO-MJO teleconnection relationships

JFM anomalous AR IVT (shading), z500 (blue lines), and wind at 700hPa (vectors) for RMM Phase 2/3

The JFM MJO teleconnections in the QBOE is featured by

- a stronger anomalous z500 high with a wider zonal range and longer persistence
- anti-cyclonic gyre in the lower troposphere

poleward shift of the AR path induced by the MJO teleconnections

V. Takeaway Messages

- > High consistency among the three ARDTs for the QBO-AR connection over the NP.
 - ✓ poleward shift in QBOE
 - ✓ zonal narrowing in QBOE
 - ✓ strong seasonality
 - Highly agreed connections also found for other regions
- > Significant impacts of the QBO on the local AR frequency around the NP.
- Contributions from both the season-mean background and the MJO teleconnection changes.

I. Introduction Quasi-Biennial Oscillation

- Stratospheric regime of zonal-mean flow. Easterly to westerly, back and forth.
- Downward propagation.
- > ~28-month periodicity.

III. AR Domain Changes over the Northern Pacific

III. AR Domain Changes over the Southern Pacific

Hövmollor diagrams of the all-season-mean AR frequency (lines) and QBOE-QBOW differences (shadings)

III. Local Impacts around the Southern Pacific Basin

Correlations between seasonal means of the QBO index (u50) and the domain-averaged AR frequency

III. AR Domain Changes over the Northern Atlantic

Hövmollor diagrams of the all-season-mean AR frequency (lines) and QBOE-QBOW differences (shadings)

III. Local Impacts around the Northern Atlantic Basin

Correlations between seasonal means of the QBO index (u50) and the domain-averaged AR frequency

16

III. AR Domain Changes over the Southern Atlantic

Hövmollor diagrams of the all-season-mean AR frequency (lines) and QBOE-QBOW differences (shadings)

III. Local Impacts around the Southern Atlantic Basin

Correlations between seasonal means of the QBO index (u50) and the domain-averaged AR frequency

