CVCWG, CESM Workshop 2024

Hemisphere-dependent Response of Hadley Circulation to ENSO and Eddy Forcing

Mahdi Hasan, Sarah Larson, Kay McMonigal*, Walter Robinson, Anantha Aiyyer

Department of Marine, Earth & Atmospheric Science North Carolina State University *Currently affiliated with the University of Alaska, Fairbanks **Hadley Circulation**

☐ Recent observations indicate changes in the HC due to climate change

(Mitas and Clement 2006; Stachnik and Schumacher 2011; Nguyen et al. 2013)

Hadley Circulation Strength (HCS)

☐ A warmer climate theoretically implies a weaker Hadley circulation strength (HCS) (Held & Soden 2006)

Historical trend in HCS has high uncertainty!

Motivation

☐ Internal climate variability contributes to uncertainty in the recent HCS trend (Nguyen et al. 2013; Zaplotnik et al. 2022).

Internal Atmospheric Variability

Primarily Eddy driven internal atmospheric variability (Walker & Schneider 2006; Caballero 2007; Zurita Gotor & Alvarez-Zapatero 2018)

Coupled Variability

Anomalous wind-stress (τ') driven tropical ocean circulation variability (e.g., ENSO, Upwelling) (Oort & Yiegner 1997; Seager et al. 2003; Chemke 2022)

Atmospheric Eddy

Interannual HCS Variability

τ'-driven ocean circulation

Science Questions

- ☐ What is the relative importance of eddy-driven atmospheric variability versus dynamically coupled modes, including ENSO on HCS variability?
 - How much does ENSO contribute alone?

☐ Do the potential drivers of HCS variability operate in one or both hemispheres?

We answer these questions using unique NCAR Community Earth System Model CESM2 (1° resolution) model experiments under pre-industrial settings.

CESM2 Model Experiments

Fully Coupled (FC): State-of-the-art model, include leading climate variabilities like ENSO, IOD, Atlantic Niño.

Mechanically Decoupled (MD): Global ocean lacks the τ '-driven ocean variability (Larson et al. 2024, JCLI).

- Lacks τ'-driven ocean modes including ENSO.
- Retains buoyancy coupling

FC – MD:

Impact of τ '- driven ocean circulation variability

FC and MD model datasets are freely available in Climate Data Gateway!

Mean HC

Mean HC in the CESM2 FC shows similar characteristics to the ERA5 reanalysis.

Interannual HCS Variability

FC – MD:

Impact of τ '- driven ocean circulation variability

ullet au'- driven ocean circulation variability significantly increases HCS variability in the SH, not in the NH.

NH HCS Variability

 \Box τ '- driven ocean circulation variability has an insignificant contribution to the NH HCS variability.

Role of upper-atmospheric eddies:

Strong NH HC: Divergence of anomalous EMF in subtropics.

Weak NH HC: Convergence of anomalous EMF in subtropics.

Eddies influence HCS in NH and SH.
-Strong in NH

SH HCS Variability

 \Box τ '- driven ocean circulation variability significantly contributes to the SH HCS variability.

- ENSO is highly correlated with the HCS variability in SH.
- ENSO doesn't modulate NH HCS variability.
- ENSO dominates over all the coupled modes in driving HCS variability.

Summary

- □ Eddy-driven internal atmospheric variability impacts the HCS variability in both hemispheres.
 - A strong influence in the NH.
- □ ENSO-driven coupled variability impacts the HCS variability in SH.
 - ENSO-related heating is concentrated in the SH.

Contact: mhasan6@ncsu.edu

Hasan, M., Larson, S., McMonigal, K., Robinson, W., Aiyyer, A. (2024). Hemisphere-dependent Response of Hadley Circulation to ENSO and Eddy Forcing. <u>Journal of Climate</u>, in Revision.