Impact of Horizontal Resolution on Ozone Atmospheric Chemistry in Southeast Michigan during MOOSE

2024 CESM Workshop June 12th, 2024

Noribeth Mariscal^{1*}, Yaoxian Huang¹, Louisa Emmons², Duseong S. Jo², Ying Xiong^{1,3}, and Jiajue Chai⁴

¹Department of Civil and Environmental Engineering, Wayne State University, Detroit, MI ²Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO ³Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI ⁴Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY

*Contact: nmariscal@wayne.edu

Ozone in Southeast Michigan

Model Simulation Period & Setup

Michigan-Ontario Ozone Source Experiment (MOOSE)

- Goal: Define potential attainment strategies & understand excess O_3 in SEMI.
- Phase I: May 24 June 30, 2021 (Xiong et al., JGR, 2023)
- Phase II: June 6-28, 2022
- Varied, High-Resolution Measurements

42.5°N

 Aircraft (NASA G-III), Mobile Lab (Aerodyne), Stationary, Pandora

AML Track

83°W

New Haven

Model Simulations

- Two different resolutions (~14 km & ~7 km)
- Implementation of diurnal cycles of nitric oxide anthropogenic emissions
- MOZART-TS2 Chemical Mechanism
- NASA MERRA2 (0.625° x 0.5° every 3 hours)
- CAMS-GLOB-ANTv5.1, CAMS-GLOB-AIRv2.1, QFED, MEGANv2.1

Noribeth Mariscal

2024 CESM Workshop

Meteorological Consistencies

Importance of Diurnal Cycles in the Model

- Diurnal variations for anthropogenic emissions are NOT generally considered in CESM2.
- Used sector- and country-specific temporal profiles from Crippa et al (2020)
- Hourly profiles based on downscaling of annual emissions to hourly per arid

	MICH [kt]	SEMI [kt]	SEMI/MICH
AGS	0.46	0.04	9.0%
AWB	0.10	0.01	10.8%
ENE	9.44	2.86	30.3%
RES	1.03	0.48	47 .1%
TNR	1.99	0.36	18.1%
TRO	15.13	3.50	23.2%

Importance of Diurnal Cycles in the Model

- Diurnal variations for anthropogenic emissions are NOT generally considered in CFSM2.
- Used sector- and country-specific temporal profiles from Crippa et al (2020)
- Hourly profiles based on downscaling of annual emissions to hourly per grid ,cell.

1.75

1.50

1.25 1.00

0.75

0.50

0.25

0.00

0

10

Hours

Importance of Diurnal Cycles in the Model

- Diurnal variations for anthropogenic emissions are NOT generally considered in CFSM2.
- Used sector- and country-specific temporal profiles from Crippa et al (2020)
- Hourly profiles based on downscaling of annual emissions to hourly per grid ,cell.

1.75 1.50

1.25 1.00

0.75

0.50

0.25

0.00

0

	MICH [kt]	SEMI [kt]	SEMI/MICH
AGS	0.46	0.04	9.0%
AWB	0.10	0.01	10.8%
ENE	9.44	2.86	30.3%
RES	1.03	0.48	47 .1%
TNR	1.99	0.36	18.1%
TRO	15.13	3.50	23.2%

Detroit – E 7 Mile

Noribeth Mariscal

10

Carbon Monoxide Concentrations at the Surface

ne30x16 Regridded – ne30x8

- Carbon Monoxide (CO) **fine-scale features captured in regional refinement grids**, with point sources better resolved in the ne30x16 (7km resolution).
- CO is relatively chemically inactive, so low chemistry effects due to horizontal grid resolution.

Ozone Concentrations at the Surface

- ne30x16 grid captures more NO_x titration over urban areas due to less artificial mixing of NO_x over urban areas.
- Regridding of ne30x16 to ne30x8 resolution does not reproduce the same results the ne30x8 simulation output.

ne30x16 Regridded - ne30x8

Changes in Ozone

*Urban (Trinity) Reference Site

Biogenic VOCs Dependent on Grid Resolution

*Urban (Trinity) Reference Site

Model Evaluation with Aerodyne Mobile Lab

- Both O₃ and NO₂ are represented² well at the ne30x8 and ne30x16 resolutions.
- O₃ in the ne30x16 simulations performs best during peak O₃ times.

Model Evaluation with Pandora (in molecules/cm²)

Summary

thank you! questions?

Contact: nmariscal@wayne.edu

backup slides.

Carbon Monoxide Concentrations at the Surface

- Carbon Monoxide (CO) **fine-scale features captured in regional refinement grids**, with point sources better resolved in the ne30x16 (7km resolution).
- CO is relatively chemically inactive, so low chemistry effects due to horizontal grid resolution.
- Regridding model output does not give the same results.

Ozone Concentrations at the Surface

- ne30x16 grid captures more NO_x titration over urban areas due to less artificial mixing of NO_x over urban areas.
- Regridding of ne30x16 to ne30x8 resolution does not reproduce the same results the ne30x8 simulation output.

MUSICAv0

<u>MUIti-Scale Infrastructure for Chemistry & Aerosols, Version 0</u>

- Configuration of CESM/CAM-Chem
- Spectral Element Dynamical Core 🗆 Regional Refinement
- Default Resolution:
 - ~14 km Latitude x ~14 km Longitude (1/8°) over CONUS
 - 32 Vertical Layers (~40 km Model Top)
 - ~28,000 core-hr/sim-month

Regional Refinement over Michigan

- Community Mesh Generation Toolkit
- ne30x8 CONUS
 ne30x16 MICH
- ~7 km Latitude x ~7 km Longitude over Michigan
- Smooth transition (halo) between resolutions to mitigate potential errors
- Time Step: 3.75 mins
- ~18,000 core-hr/sim-month

GRID SETUP

Regional Refinement over Michigan

- Community Mesh Generation Toolkit
- ne30x8 CONUS 🗆 ne30x16 MICH
- ~7 km Latitude x ~7 km Longitude over Michigan
- Smooth transition (halo) between resolutions to mitigate potential errors

• Time Step: 3.75 mins

ne30x16

MODEL CONFIGURATION

- April-August 2021
 - April used as a spin up
- Initial conditions based on SE 1° CAM-Chem run
- NASA MERRA-2 (Resolution: 0.625° x 0.5° every 3 hours)
 - Meteorological nudging not applied to Michigan [41°N, 272.5°W]

• MOZART-TS2

- Comprehensive representation of tropospheric and stratospheric chemistry with updated gas-phase chemistry for isoprene and terpene species
- MAM4: Spatial distribution of aerosols
- VBS-SOA: secondary organic aerosols separation

EMISSIONS

Anthropogenic and biomass burning emissions are generated offline and regridded to corresponding resolution.

- •Copernicus Atmosphere Monitoring Service Version 5.1 (CAMS-GLOB-ANTv5.1)
 - Global anthropogenic emissions based on monthly emissions from EDGARv5 and CEDSv2
 - Resolution: 0.1° x 0.1°
 - Sectors: ENE, RCO, TRO, TNR, FEF, IND, SLV, AGR, MMA, SHP, SWD

•CAMS-GLOB-AIRv2.1

- Aircraft emissions
- Resolution: 0.5° x 0.5°

EMISSIONS

• Biomass Burning

- Quick Fire Emissions Dataset (QFED)
 - Resolution: 0.25° x 0.25°
- Fire INventory from NCAR (FINN)
 - Provides emission factors for aerosols and trace gases
 - Resolution: 0.9° x 1.25°

EMISSIONS

• Biogenic Emissions

- Model of Emissions Gases and Aerosols from Nature, Version 2.1 (MEGANv2.1)
- Based on plant functional types (PFT) distributions and leaf area index (LAI) from MODIS
- Calculated online
 horizontal
 resolution affects meteorological fields
 and resolves topography.

Fig. 1. Schematic of MEGAN2.1 model components and driving variables. Guenther et al., 2012

