
CLUBB GPUization and
Performance Portability
Gunther Huebler

In Collaboration with:
Vincent Larson, Supreeth Suresh, Jian Sun, Sheri Voelz,
John Dennis, Brian Dobbins, NCAR and DOE

CLUBB - Cloud Layers Unified by Binormals

Designed to operate over a single column of vertical levels

Majority of calculations in the vertical are independent

+ Grid columns are completely independent

= Lots of parallelism to exploit

V
er

ti
ca

l
 le

ve
ls

Grid columns

New CLUBB input

Initial loop pushing - Top Down

Push loop into procedure,
creating one massive loop

- requires adding a
dimension to fields

Separate
computation and

procedure calls by
breaking up big loop

Replace vector
notation with loops

and push another
loop down

Loop Pushing Challenges

Global variables

- Loop pushing should always produce identical output

- Breaking up loops may cause errors if global variables are used

Duplicate procedures for different sized data are needed

- 1D/2D/scalar procedures wrapped with and interface works well

- using `acc routine` is the other option (but not recommended)

GPUization

Start at lowest levels
- add parallel loop directives
- add copyin / copyout / create
 for inputs / outputs / locals

- move data statements up a
level, leaving local allocations
(create)

- add loop directives

Repeat until all computations
are in parallel loops and all
data copies are at top level

Challenges

Bug hunting

- Finding bugs can require lots of iteration, GPUizing small sections at a time

Strange bugs

- Size 0 array allocation (create) causes memory errors for implicitly structured

statements

Testing

- Output won’t be identical, can be hard to differentiate bit-differences from errors

Testing

ad
va

n
ce

_c
lu

b
b

st
an

d
al

o
n

e
m

o
d

el

ad
va

n
ce

_c
lu

b
b

st
an

d
al

o
n

e
m

o
d

el

stats output stats output

- Modified standalone model to create
and output fake columns

- Measured output discrepancies at
different optimization levels

- Measured output discrepancies when
adding an intentional error

- Determined a threshold to distinguish
error from bit-changes

GPUization - Linear Algebra

Historically CLUBB has used Lapack

We created custom LU decomp solvers

 - no need for external library

Also 4x faster than Lapack on CPUs

 - solvers are tailored to 3 and 5 band matrices

 - no copying matrix into a standard form

 - pivoting doesn’t seem necessary for our use case

Converting from OpenACC to OpenMP

Converting from ACC to OMP directives is entirely automated

- total of 2640 lines of acc directives in CLUBB

- https://github.com/intel/intel-application-migration-tool-for-openacc-to-openmp

Most ACC directives have direct OMP equivalents

- acc parallel loop = omp parallel loop
- acc data = omp data / acc enter data = omp enter data
- no gang/vector in OMP

- no default(present) in OMP

Performance Results

Numbers were gathered using the standalone “fake” column method

Times shown refer to 100 calls to advance_clubb_core

Times were gathered using a case with 134 vertical levels

Results from Derecho use NVHPC on Nvidia A100 + AMD EPYC 7763

Results from Frontier use CRAY on AMD MI250X + “optimized” AMD EPYC 7453

CPU (single core) vs GPU
Derecho -- AMD EPYC 7763 vs NVIDIA A100

CPU (single core) vs GPU
Frontier -- AMD EPYC 7453 vs AMD MI250X

CPU Multicore vs GPU?
Depends on hardware

- Derecho - 32 CPU cores per GPU
- Frontier - 8 CPU cores per GPU

Difficult finding the best configuration
- 32 threads on a 32 core CPU is NOT optimal
- optimal thread number depends on columns

Different ways of parallelizing on CPU
- openmp cpu threads
- mpi processes
- acc on CPU cores (-acc=multicore)

Using acc multicore (acc on CPU cores) on Derecho.
The largest speedup observed was 4.4x over single
core runtime using 16 threads and 2000 columns

Cost of Data Transfers --- Derecho A100+acc+nvhpc

Cost of Data Transfers --- Frontier MI250X+acc+cray

Cost of Data Transfers

Frontier GPU+data transfers: ~8x speedup vs single CPU core

Derecho GPU+data transfers: ~5x speedup vs single CPU core

Recall: The largest CPU multicore speedup vs a single CPU core was 4.4x

 (only tested on Derecho using -acc=multicore)

OpenACC vs OpenMP --- Runtime Comparison

OpenACC vs OpenMP --- What’s Slower?

Derecho+NVHPC - ACC: 181us OMP: 6.4ms (35x slower)

OMP is NOT slower here with Frontier+CRAY

Frontier+CRAY - ACC: 161us OMP: 27ms (165x slower)

OMP is NOT slower here with Derecho+NVHPC

Loops in kernels perform worse with
OMP, but not consistently

A100 vs MI250x

Tips and Tricks - ACC + OMP

No issue with OpenMP and OpenACC directives on the same loops

Define explicitly which directives to obey in FFLAGS and LDFLAGS

- NVHPC: -[no]acc -mp=gpu

- CRAY: -h [no]omp -h [no]acc

Tips and Tricks - NVHPC Function Bug?

Arguments cannot appear as input and output

- no issue in subroutines as inputs

 This is a workaround

Tips and Tricks --- Different Data Directives
Explicitly structured

- lifetime of data region is until end
- explicit regions can be nested

Implicitly structured
- lifetime of data region is procedure
- least customizable

Unstructured
- no regions, data lives until delete
- most customizable

Tips and Tricks - Cray vs NVHPC

CRAY - default(present) will prevent scalars from being copied in before kernels

NVHPC - default(present) only prevents automatic array copies

- Using default(present) with cray will require explicit copyins for scalars

CRAY - acc create() on a previously allocated variable will overwrite the allocation

NVHPC - acc create() on a previously allocated variable will have no effect

- This is a way a bug might sneak by if you only test with NVHPC

Tips and Tricks - reduction

Goal - GPUized version of “any()”

Problem - “any” is a serial operation

Solution - mimic with “reduction” clause

Behavior in order

1. copyin boolean value set by CPU to GPU (light blue)

2. check threshold in parallel (first blue)

3. perform reduction calculation (second blue)

4. copyout final boolean from GPU to CPU (pink)

Source code using OpenACC

Memory Operation / Kernel execution over time (nsys-profile)

Tips and Tricks - CRAY + Lapack

We encountered a strange error when compiling Lapack using CRAY at optimization level -O1 or above

- Symptom: undefined reference to _ismin_ / _idmin_ / _ismax_ / …

- Fix: compile with secret flag “-hnopattern”

- https://github.com/OpenMathLib/OpenBLAS/issues/3651

Tips and Tricks - Profiling

Omnitrace is the AMD equivalent of Nvidia Nsight Systems

- https://github.com/AMDResearch/omnitrace

- https://developer.nvidia.com/nsight-systems

https://github.com/AMDResearch/omnitrace

