Expanding the UFS to Multiple Dynamical Cores

Opportunities and Challenges

Dom Heinzeller (UCAR/JCSDA) and Ligia Bernardet (NOAA/GSL and DTC)

With contributions from Jacob Carley, Jun Wang and Kevin Viner (NOAA/EMC), Dustin Swales (NOAA/GSL and DTC), and Dan Rosen (NCAR/CGD)

Simplifying NOAA's Operational Forecast Suite

Reducing the 21 Stand-alone Operational Forecast Systems into Eight Applications

21 Independent Stand-alone Systems Unified Forecast System (UFS) UFS Applications Global Weather, Waves & Global Analysis - GFS/ GDAS Medium Range & Subseasonal Global Weather and Wave Ensembles, Aerosols - GEFS Marine & Short-Range Regional Ensembles - SREF Cryosphere **Global Ocean & Sea-Ice - RTOFS Global Ocean Analysis - GODAS** Seasonal Seasonal Climate - CDAS/ CFS COMMUNITY MODELING CO-DEVELOPMENT **Regional Hurricane 1 - HWRF** NOAA Hurricane **Regional Hurricane 2 - HMON Regional High Resolution CAM 1 - HiRes Window Regional High Resolution CAM 2 - NAM nests/ Fire Wx Short-Range Regional Regional High Resolution CAM 3 - RAPv5/ HRRR HiRes CAM & Regional HiRes CAM Ensemble - HREF Regional Air Quality** Private **Regional Mesoscale Weather - NAM Regional Air Quality - AQM Air Quality & Dispersion Regional Surface Weather Analysis - RTMA/ URMA** Atmospheric Transport & Dispersion - HySPLIT Coastal **Coastal & Regional Waves - NWPS** Great Lakes - GLWU Lakes **Regional Hydrology - NWM** Hydrology Space Weather 1 - WAM/IPE Space Weather 2 - ENLIL **Space Weather**

From Uccellini et al. (2022)

Implementation of UFS applications in last 5-7 years

Many successes, for example for UFS Global (GFS) and Hurricanes (HAFS)

For the Rapid Refresh Forecast System (regional convection allowing, HRRR successor), significant forecast issues remain

- Details of convective structure
- Excessive precipitation biases
- Does not meet operational requirements

Mitigation efforts in RRFS were unsuccessful. Two studies were requested by NOAA leadership:

- 1. A <u>white paper</u> describing the RRFS problems and mitigation strategies
- 2. A <u>study</u> to estimate the effort for adding another dynamical core to the UFS

Rapid Refresh Forecast System (RRFS)

- FV3 dynamical core (limited area model)
- Hourly updated
- 3-km grid spacing over North America, 65 vertical layers
- Hybrid 3DEnVar data assimilation (30 members)
- Includes Smoke and Dust
- Deterministic forecast to at least 18 h every hour
- Deterministic+ensemble forecast to 60 h every 6 hours

The culprit: C-D grid structure + necessary damping

- C-D grid structure of FV3 represents rotational modes better than C grid
- Requires enhanced damping to remove excess energy at/near gridscale
- Combination of grid choice and necessary damping leads to wider/stronger updrafts, stronger storms and more precipitation

Fixing the issue in FV3 or moving to another dycore?

- Addressing the issue in FV3 requires major code changes: "It is important to realize that the changes needed for the FV3 dynamical core, as described below, are significant enough that the resulting code would effectively create a second dynamical core within the UFS" (from the <u>white paper</u>)
- The alternative: Adding MPAS to the Unified Forecast System as a second dynamical core?
 - MPAS has established Limited-Area Model capability
 - MPAS-JEDI has demonstrated data assimilation capabilities
 - MPAS has demonstrated promising performance for RRFS convective applications

But which of the two options is cheaper, faster, more promising for the future?

White paper: Jacob Carley et al. (2023), Mitigation Efforts to Address Rapid Refresh Forecast System (RRFS) v1 Dynamical Core Performance Issues and Recommendations for RRFS v2 (<u>https://doi.org/10.25923/ccgj-7140</u>)

Tiger Team to scope out adding MPAS to UFS

- Team: Dan Rosen, Dom Heinzeller, Dustin Swales, Jun Wang, Kevin Viner, Ligia Bernardet
- Scope: Research technical work needed to bring a new dycore into the UFS
 - Be general but focus on the RRFS configuration
 - Be general but focus on MPAS
 - Provide an estimation of resources needed
- Collected feedback from UFS application leads, NCAR/MMM and NCAR/CGD
- Report: Jun Wang et al. (2023), Integration of MPAS Dycore into UFS (<u>https://ufs.epic.noaa.gov/wp-content/uploads/2024/01/Integration-of-MPAS-Dycore-into-UFS.pdf</u>)

How to integrate MPAS in the UFS (what part of it)?

MPAS Standalone (forecast model)

- Atmospheric model (MPAS-A: MPAS dycore, physics, ... + infrastructure shared with MPAS-O/I/...)
- Ocean, sea ice, etc. model components (not part of public release)

MPAS in CESM/CAM (referred to as SIMA-MPAS)

- The MPAS dycore is integrated in CESM/CAM
- Dycore code comes from the same repo as MPAS Standalone

MPAS in UFS: Approach similar to CAM-SIMA, i.e. add a new dycore to UFS

• Single modeling system has many advantages for NOAA and the community

Generalizing the UFS atmospheric component

- The atmospheric component of the UFS, FV3ATM, is a coupling interface between dynamics, physics, atmospheric I/O, and external components
- Needs abstraction and generalization (FV3ATM -> UFSATM)
 - Facilitate introduction of a new dycore, such as MPAS
 - Opportunity to clean up and restructure

UFSATM	
Code Mgmt	
Pre-Proc	
DA	
Physics	
Coupling	
I/O	
Post-Proc	

Code Management

- MPAS will be a submodule under UFS Weather Model Atmospheric Component
- Code will point directly to the MPAS official repository (NCAR/MMM)
- MPAS UWM interface will stay under UWM atmosphere repository
- This is similar to how MPAS is used in CESM/CAM / how FV3 is used in UFS
- Needs good relationship between UFS and MPAS teams and also \$\$\$?

Pre-Processing

- There are existing tools to ingest GRIB2 and drive MPAS
- Work needed to use GFS (v16) analysis data available as netCDF files on native grid
- There are also existing tools to interpolate static datasets to MPAS grid
- These may need to be connected to existing UFS utility packages
- Need to develop code to generate input fields for some CCPP physics

UFSATM	J
Code Mgmt	
Pre-Proc	
DA	
Physics	
Coupling	
I/O	
Post-Proc	

Data Assimilation (DA)

- JEDI DA algorithms and obs operators are model-agnostic
 - Allow for swapping the model interface
- JEDI uses grids provided by model interfaces
 - \circ $\,$ Native grid DA for both FV3 and MPAS can be used
- Ongoing JEDI-MPAS experiments by MMM and JCSDA
- Can leverage JEDI-UFS work and JEDI-MPAS work at JCSDA (w/ in-kinds)

UFSATM
Code Mgmt
Pre-Proc
DA
Physics
Coupling
I/O
Post-Proc

Physics-Dynamics Coupling

- The equivalent of the RRFS physics schemes in MPAS are different (older) than in UFS, and they are not connected via CCPP
- Use CCPP Framework and Physics in UFSATM to connect MPAS dycore with physics
 - Create MPAS-specific interstitial schemes in CCPP, new suite definition files
 - Parameterizations need to return tendencies
 - Different placement of calls to CCPP (before/after dycore)
 - Transformations: moist to dry, pressure levels to geometric height, (i,k) to (k,i)
 - \circ ~ Some of this functionality exists in MPAS-A/CCPP and needs to be reused
- Some work needed for mesh-dependent stochastic processes (not all of them are critical for short-range weather)

U	FSATM
Co	de Mgmt
Р	re-Proc
	DA
F	Physics
С	oupling
	I/O
Po	ost-Proc

Inter-Component Coupling: UFSATM NUOPC Cap

- Drive MPAS dycore through existing UFSATM NUOPC Cap
- Create connections between MPAS and the UFSATM NUOPC Cap
- Some of this functionality already exists in CESM/CAM and can be leveraged

UFSATM
Code Mgmt
Pre-Proc
DA
Physics
Coupling
I/O
Post-Proc

Input/Output

- Approach 1: Use MPAS I/O on native mesh, then use convert_mpas utility to interpolate to lat-lon
 - Sufficient for initial testing
- Approach 2: Develop asynchronous I/O (write component) capability for use in UFSATM
 - Needed to increase performance for operations
 - Ties in with plans to develop a generic write grid component for UFS components

	UFSATM	
	Code Mgmt	
1	Pre-Proc	
	DA	
	Physics	
	Coupling	
	I/O	
	Post-Proc	

Post-Processing

- Run offline UPP from MPAS history files
 - UPP uses files created by convert_mpas
- MPAS directly outputs all the post-processing products
 - Integrate UPP code into MPAS to output in native mesh, then convert to lat-lon
- Run inline UPP in write grid component
 - Develop write grid component for all grids needed and call UPP

UFSATM
Code Mgmt
Pre-Proc
DA
Physics
Coupling
I/O
Post-Proc

Opportunities & challenges for MPAS dycore in UFS

Opportunities

- High chance to meet RRFS v2 operational requirements with MPAS cheaper/faster than with FV3
- Flexibility of having two dycores in UFS choose what works best
- Recognition and impact of MPAS efforts, and funding for MPAS development/code management

Challenges

- Implementing MPAS dycore in UFS requires a number of expert developers available for the job
- Maintaining two dycores requires more resources
- Being used in operations can impose constraints/priorities on development

Bonus slides

Convective Storm Intensity, High Precipitation Bias

Most obvious in convectively unstable environments with relatively weak forcing and vertical wind shear

Physics-Dynamics Coupling (continued)

FV3

MPAS

