
Unified Workflow:
A Toolbox and Framework for NWP

Systems
Christina Holt

UW Team: Fredrick Gabelmann, Paul Madden, Emily
Carpenter, Naureen Bharwani, Brian Weir

The Unified Workflow Project: The Team

An EPIC Agile Team welcoming contributors with various
objectives to achieve a common end goal –
unification of workflows across UFS

The current team comprises staff from NOAA GSL with funding
from the JTTI and SENA, and Raytheon/Element 84 Staff under

the EPIC Contract

The Unified Workflow Project: The Goals

Unification:

Ease of Use:

Flexibility:

Multiple apps using the same tools to
perform the same tasks

Empowering scientists to realize experiments
without being limited to what already exists

Flattening the learning curve to get what you need
out of a UFS App

Facilitate R2O: Research and operations configuring and running
the same components with the same languages
and infrastructure

UFS Workflow Workshop Ideas

Hendrik Tolman, UFS Workflow, April 9, 2021

The Unified Workflow Project: The Software

A Python package that provides command line tools and a
Python API to perform common workflow tasks and drive UFS
components (forecast model, post processing, verification, etc.)

We publish each release to the ufs-community Anaconda
channel for easy installation

We’re planning to integrate the tools into multiple UFS Applications
Currently working with

Short Range Weather (a limited-area, static domain system)
Land DA (stand-alone JEDI-based land state cycling)

uwtools v2.0.1 On GitHub:

On Read the Docs:

Install it with conda:

$ conda install -c ufs-community uwtools=2.0*

Use the command line tools:

$ uw [mode] [action] [-h]

Use the API:

import uwtools.api as uwtools

Intro to uwtools v2.0.1 CLI

One Interface: uw

Mode for what
to act on Action to take

Every level
has a help flag

Each combo has
an API equivalent
not shown here

Generic Tools: Config

compare, transform, modify, and validate
key/value configurations

YAML, Fortran namelists, INI, bash

Generic Tools: Config Compare

(uwtools) $ uw config compare --file-1-path input1.nml --file-2-path input2.nml

[2024-01-25T17:52:27] INFO - input1.nml

[2024-01-25T17:52:27] INFO + input2.nml

[2024-01-25T17:52:27] INFO ---

[2024-01-25T17:52:27] INFO atmos_model_nml: blocksize: - 32 + 40

[2024-01-25T17:52:27] INFO atmos_model_nml: ccpp_suite: - FV3_GFS_v16 + FV3_HRRR

[2024-01-25T17:52:27] INFO cires_ugwp_nml: launch_level: - 27 + 25

[2024-01-25T17:52:27] INFO fv_core_nml: agrid_vel_rst: - False + None

[2024-01-25T17:52:27] INFO fv_core_nml: d2_bg_k2: - 0.0 + 0.04

...

Generic Tools: Config Realize
platform:
 NCORES_PER_NODE: 40

task_run_fcst:
 RUN_FCST_TN: "run_fcst"
 PE_MEMBER01: 221
 NNODES_RUN_FCST: !int '{{ (PE_MEMBER01 + PPN_RUN_FCST - 1) // PPN_RUN_FCST }}'
 PPN_RUN_FCST: !int '{{ platform.NCORES_PER_NODE // OMP_NUM_THREADS_RUN_FCST }}'
 WTIME_RUN_FCST: 04:30:00
 MAXTRIES_RUN_FCST: 1
 OMP_NUM_THREADS_RUN_FCST: 2

task_run_fcst:
 OMP_NUM_THREADS_RUN_FCST: 4

platform:
 NCORES_PER_NODE: 40

task_run_fcst:
 RUN_FCST_TN: "run_fcst"
 NNODES_RUN_FCST: 12
 PPN_RUN_FCST: 20
 WTIME_RUN_FCST: 04:30:00
 MAXTRIES_RUN_FCST: 1
 OMP_NUM_THREADS_RUN_FCST: 4

input file

apply
supplemental

 file
output file

Generic Tools: Template

Leverage Jinja for a Turing-complete templating
language

https://jinja.palletsprojects.com/en/3.1.x/

Generic Tools: Template Render

(uwtools) $ export cycle=2023092112

(uwtools) $ echo '{{ cycle[0:4] }}' | uw template render

 2023

(uwtools) $ echo '{{ cycle[8:] }}' | uw template render

12

(uwtools) $ echo '{{ cycle[0:4] }}' | uw template render --values-needed

[2024-03-01T12:25:05] INFO Value(s) needed to render this template are:

[2024-03-01T12:25:05] INFO cycle

Tools are designed to leverage Linux pipes and env vars

--values-needed flag to introspect templates and provide a list of

required variables

Generic Tools: Template Render

start_year: {{ cycle[0:4] }}
start_month: {{ cycle[4:6] }}
start_day: {{ cycle[6:8] }}
start_hour: {{ cycle[8:] }}
start_minute: 0
start_second: 0
nhours_fcst: {% if cycle[8:] == 12 %}48{%else%}12{%endif%}
dt_atmos: {{DTATMOS}}
...

Render templates from environment variables or values files

Graph-oriented Drivers

Graph-oriented Driver: Basics

(uwtools) $ uw some_component namelist_file -q

(uwtools) $

Each task is represented by
a node in a graph

Dependencies are represented
by edges

The UW Driver can request any
node in the graph

Graph-oriented Driver: How?
iotaa python package: It’s One Thing After Another

iotaa is developed and maintained by Paul Madden at
https://github.com/maddenp/iotaa

A workflow engine that expresses workflows using Python code to define
tasks that are responsible for readying their assets, and the relationships

between them.

@task
def namelist_file(rundir):

fn = "input.nml"
 yield “Namelist file”
 path = rundir / fn
 yield asset(path, path.is_file)
 yield path.mkdir(parents=True)
 create_user_updated_config(...)

Asset name
The asset(s)

Requirements for readying the asset

How to complete the task

Graph-oriented Driver: Benefits

Selective
execution

Composition

Self-
healing

Idempotence

Iteration
Break complex tasks
down into reusable

pieces.

Selectively execute any graph
subtask. Iterate with a driver until all

tasks are complete.

Some data isn’t ready on the first
run? Wait for it and run the driver

again.
Find an error in an asset?

Remove it and run the driver to
correct it.

Completed tasks won’t run
again, saving resources.

Accidentally delete a file?
Run the driver to create it

again.

Summary

uwtools is a tangible Python package that you should install
today to help you with workflow tasks.

The tools are designed to help scientists be productive, and to
help applications increase the automation of common tasks.

Graph-oriented drivers are more flexible than many existing
solutions that are often hard-coded, procedural, and/or brittle.

Helps with hierarchical testing for research, and
reliability and recovery in real time use cases

Upcoming Plans

● Release new tools/drivers regularly
● Integrate uwtools into existing applications
● Build drivers for more UFS components

○ FV3 global and coupled; regional is available with limited flexibility now
○ JEDI
○ MPAS
○ Preprocessing
○ UPP

● Build more generic tools
○ Moving files
○ Interfacing with ecFlow

(uwtools) $ uw jedi stage_obs

(uwtools) $ uw post run

(uwtools) $ uw forecast create_namelist

Acknowledgements
This research was supported in part by
● NOAA cooperative agreement NA22OAR4320151
● An FY22 WPO JTTI award: Implementation of a Unified

Workflow for the Unified Forecast System (UFS) Short
Range Weather (SRW) Application

● The OCIO Software Engineering for Novel Architectures
program award to NOAA GSL

● The EPIC Contract
● The NOAA R2O Project
● In-kind contributions from NOAA EMC, NOAA GSL, and

George Mason University

