Idealized CO2 Increases Drive Enhanced Fire Activity due to Vegetation and the CO2 Fertilization Effect

Robert J. Allen UC Riverside

And: James Gomez, Larry Horowitz and Elena Shevliakova

IIH

United Nations Environment Programme. Spreading like Wildfire – The Rising Threat of Extraordinary Landscape Fires (2022).

- A *wildfire* is the result of a complex interaction of many factors:
 - Biological
 - Meteorological
 - Physical
 - Social
- These factors influence wildfire characteristics:
 - Likelihood
 - Behavior
 - Duration
 - Extent
 - Impact

Changes in many of these factors are *increasing* the **risk of wildfire** globally

Factors and conditions influencing wildfire occurrence

Wildfire smoke \Box Up to half of PM2.5 in Western U.S.

- Nationwide, wildfires are now responsible for up to 25% of fine-particle pollution.
- Has *reduced* multi-decadal US progress in reducing PM2.5.
- Is climate change (e.g., warming and drying) the dominant driver of this increase?
- What about changes in vegetation (fuel)?
- Observations show *intensification* of terrestrial biosphere activity including "greening" of the planet:
 - Much of which was attributed to the CO2 fertilization effect
 enhanced carbon uptake and storage.

https://www.pnas.org/doi/10.1073/pnas.2011048118

https://www.latimes.com/california/story/2021-01-13/wildfire-smoke-fine-particle-pollution-western-us-study Burke, M. et al. The contribution of wildfire to PM_{2,7} trends in the USA. *Nature* (2023).

Models and Experiments

- 7 CMIP6 ESMs performed and archived 1% per year CO2 experiments.
 - Atmospheric CO2 concentrations *increase* from 1850 levels (~284 ppm).
 - Both **biogeochemical** and **radiative** processes respond to *increasing* CO2.
 - Fixed 1850 land-use land change, population, and non-CO2 forcing agents.
 - All 7 ESMs have a fire module (of varying complexity) that simulates wildfire activity.
 - Emissions from wildfires *do not feedback* onto climate.
- Additional, analogous simulations include:
 - 1% per year CO2-bgc
 biogeochemical processes
 over land and ocean respond to increasing
 atmospheric CO2 concentrations
 atmospheric radiative transfer calculations use a CO2
 concentration that is fixed at the preindustrial value.
 - 1% per year CO2-rad
 increasing atmospheric CO2 concentration impacts atmospheric radiative transfer and thus climate, but not the biogeochemical processes directly over land and ocean (which see the preindustrial atmospheric CO2 concentration).
- Climate responses are based on the difference in years 100-140 relative to the corresponding 40 years from the **preindustrial control** simulation:
 - CO2 had quadrupled by year 140.
 - Similar results at the time of CO2 doubling (year 70), with ~1/2 the magnitude.

- CMIP6 MMM global **fFire** response and 90% confidence interval \Box **45.3±6.6 kgC km⁻² day⁻¹**.
 - GFED4.1s
 35.6 kgC km⁻² day⁻¹ (models tend to overestimate)
 - FINNv2.5
 49.9 kgC km⁻² day⁻¹ (within CMIP6 90% CI)
- Regionally, considerable *model diversity exists* (and in some cases observational diversity), including notable biases e.g., overestimation for US and Europe.

Although *uncertainties* remain, CMIP6 models can reasonably reproduce the observed amount of fire carbon emissions in most regions (and interannual variability & seasonality).

- 1% per year CO2 & 1% per year CO2-bgc
 Most land areas feature a significant MMM fFire increase.
- In contrast, 1% per year CO2-rad shows a fFire decrease in most locations (except higher NH latitudes).
- Robust responses in most regions (based on model agreement on the sign of the response).

Nearly all of the MMM fFire *increase* under 1% per year CO2 occurs under 1% per year CO2-bgc

 Model diversity on the **ΔfFire magnitude** (e.g., GFDL-ESM4).

• Nonlinearity:

- 4 models show lar *increase* in 1% per relative to (rad + b
- Could be because *climate change* oc per year CO2-bgc probably not).
- May be related to superposition of e vegetation (fuel lo strong climate cha drying \Box increase flammability) that in 1% per year CO

Model Breakdown of Global Δ fFire

(Model Name	1% per year CO_2	1% per year CO ₂ -bgc	1% per year CO_2 -rad
	CESM2	26.7 (91.0%)	7.8 (26.6%)	0.5 (1.8%)
rger fFire r year CO2	CMCC-ESM2	24.1 (91.4%)	-1.0 (-3.8%)	11.2 (42.6%)
ogc).	CNRM-ESM2-1	18.3 (36.8%)	23.4 (47.1%)	- 14.9 (-30.1%)
ccurs in 1% (but	GFDL-ESM4	293.8 (408.6%)	335.4 (466.4%)	-15.7 (-21.9%)
	MPI-ESM1-2-LR	38.3 (125.9%)	40.1 (131.7%)	1.2 (3.8%)
the enhanced oad) plus ange (fuel t occurs only 2.	MRI-ESM2-0	26.9 (60.4%)	48.3 (108.6%)	-10.3 (-23.1%)
	NorESM2-LM	18.1 (79.7%)	5.9 (26.0%)	4.1 (17.8%)
	MMM	63.7 (127.7%)	65.7 (114.7%)	-3.4 (-1.3%)
	MMM (no GFDL-ESM4)	25.4 (80.9%)	20.8 (56.0%)	-1.4 <mark>(</mark> 2.1%)

Importance of **interactions among both the** *physical drivers* (e.g., heat waves, droughts) and *biotic factors*

Mean per vear

- Δ Climate in 1% per year CO2-bgc:
 - *Warming* and a change in atmosphere-land water partitioning
 atmospheric drying and a (less robust) soil moisture increase.
- Likely driven by a *decrease* in transpiration (-15.4±7.9%):
 - Consistent with *reduced* stomatal conductance under *higher* CO2 more efficient stomata that *lose less water* to the atmosphere.
- Most Δ vegetation lead to Δ climate that:
 - Amplify **fFire** *increase* due to Δ biomass alone \Box warming, decrease RH/PRECIP, increase SW.

CO2 fertilization impacts **energy/water/momentum fluxes** & **climate** \Box **warming** (& **increased wildfire** activity) will mute the *enhanced* carbon sequestration important for land-based climate policies & "natural climate solutions"

-95-90-85-80-75-70-65-60-55 55 60 65 70 75 80 85 90 95

- A robust *increase* in NPP for 1% per year CO2 & 1% per year CO2-bgc CO2 fertilization effect.

 - 1% per year CO2-bgc
 77.1±21.3% (all models yield an *increase*)
- 1% per year CO2-rad □ *decrease* at −7.3±4.5% (6 of the 7 models yield a *decrease*).
- The spatial pattern of the NPP response is quite similar to the corresponding spatial pattern of the **fFire** response:
 - Consistent with the large **fFire** *increase* in GFDL-ESM4, there is also a large NPP *increase* (both 1% per year CO2 and bgc).

The **fFire** *increase* is largely due to the *increase* in **biomass production** (more fuel to burn)

fFire SSP3-7.0

Multi-Model Mean Annual Mean ∆fFire [kgC km⁻² day⁻¹]

Model Agreement on the Sign of ∆fFire [%]

SSP3-7.0 ΔfFire (& ΔNPP) weaker than 1% per year CO2:

- 23.5±7.7 vs. 63.7±63.4 kgC km⁻² day⁻¹.
- Some of this difference is due to GFDL-ESM4 (*less of an outlier* in SSP3-7.0).
- *Also ACO2 A* **422** ppm vs. **641** ppm.
- 90% confidence intervals without GFDL-ESM4 (and MRI-ESM2-0):
 - **19.9±6.2** vs. **25.1±6.1** kgC km⁻² day⁻¹.
- Normalizing by $\Delta CO2$:
 - 0.05±0.01 vs. 0.04±0.01 kgC km⁻² day⁻¹ ppm⁻¹.
- Additional **SSP** considerations:
 - *fire suppression* & *ignition* □ function(population, GDP).
 - LULCC
 increase in SSP3-7.0 crop fraction (265%)
 associated reduced fire activity (esp. w/ GFDL-ESM4).
 - Further verified in SSP3-7.0 vs. SSP3-7.0-SSP1-2.6Lu.

-200-150-100-50-30-10 0 10 30 50 100 150 200

Multi-Model Mean Annual Mean ∆Crop Fraction [unitless]

-95-90-85-80-75-70-65-60-55 55 60 65 70 75 80 85 90 95

Con US cAmsAm sAf nAf Eu cnA eA sA seA Au Ld

Conclusions

- CMIP6 ESMs yield a robust *increase* in fire carbon emissions under idealized *increases* in atmospheric CO2 concentrations.
 - Largely due to the CO2 biogeochemical effects on vegetation
 CO2 fertilization effect.
 - Radiative effects alone yield a *non-significant fFire decrease* (except for NH high-lats).
- Importance of interactions among both the **physical drivers** (e.g., heat waves, droughts) and **biotic factors** \Box tends to **amplify** fFire signal.
- Only 2 models have **Dynamic Global Vegetation** (MPI and GFDL) important for future wildfire activity under increasing CO2.
- Policy efforts to mitigate fire risk should not overlook the importance of ecological drivers.
- Furthermore, there are implications for Natural Climate Solutions:
 - e.g., **reforestation/afforestation initiatives** (like Trillion Trees), which seek to enhance carbon sequestration by repopulating the world's trees.

https://www.nature.com/articles/s43247-024-01228-7

Extra Slides

- CESM fire model has 4 components:
 - "Wildfires"

 Region C.
- Burned area/fire emissions depend on:
 - Climate and weather conditions:
 - Fuel combustibility
 function of soil wetness (i.e., RZSW = volumetric soil moisture relative to that at saturation), RH and TAS.
 - Fire spread □ depends on WS, RH and soil moisture (here, RZSW).
 - Fuel load
 Vegetation composition and structure.
 - Human ignition & suppression depends on population & GDP
 - Natural ignition
 Lighting flash rate is prescribed from observations
- Fire trace gases and aerosol emissions do NOT feedback on climate.

Li et al., 2013. Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1), Biogeosciences, 10, 2293-2314

Li et al., 2012. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model. Biogeosciences, 9, 2761-2780