Plant functional trait uncertainty drives variability in productivity responses to climate change across an alpine tundra hillslope

Katya Jay, Will Wieder, Sarah Elmendorf, Marko Spasojevic, Katharine Suding

Niwot Ridge LTER: long-term measurements Alpine ecosystems are changing rapidly

Diverse alpine growth strategies may not be captured by default PFTs

Ę

Objectives

1. Incorporate site-level plant traits to improve model performance for a heterogeneous alpine ecosystem

2. Quantify the magnitude of trait uncertainty relative to forcing uncertainty under climate change

Niwot Ridge Representative Hillslope "The Saddle" Will Wieder MOIST WET DRY Moist Meadow *Resource-acquisitive* plants Wet Meadow Dry Meadow Conservative growth strategies

Site input data Saddle precipitation Tvan meteorology Ameriflux radiation Soil properties

Model evaluation Snow depth Soil temperature Soil moisture Productivity

Jay et al. 2023, JGR Biogeosciences

Ę

Site input data Saddle precipitation Tvan meteorology Ameriflux radiation Soil properties

Model projection Extended to 2100 2 forcing pathways Trait sensitivity More conservative More acquisitive

Parameterization using site-specific foliar traits

Parameterization using site-specific phenology

Phenology metrics vary between communities at Niwot

Parameterization using site-specific phenology

Ę

Phenology metrics vary between communities at Niwot

Evaluation: Simulations with NWT-specific traits show improved productivity estimates compared to those with default Arctic C3 grass

Evaluation: Simulations with NWT-specific traits show improved productivity estimates compared to those with default Arctic C3 grass

Projection: Quantifying trait uncertainty and forcing uncertainty under climate change

Trait experiments:

- Control: parameterized for site
- Acquisitive: SLA, leaf C:N, kmax
- Conservative: SLA, leaf C:N, kmax

2 forcing pathways to 2100:

	SSP2-4.5	SSP3-7.0
CO ₂ (ppm)	602.8	867.2
Warming (°C)	2.8	4.4

CMIP6 Scenarios - Anthropogenic Radiative Forcing [W/m²]

Projection: Quantifying trait uncertainty and forcing uncertainty under climate change

Within group

Trait experiments:

- Control: parameterized for site
- Acquisitive: SLA, leaf C:N, kmax
- *Conservative:* SLA, leaf C:N, kmax

Uncertainty partitioning:

Between group

	Forcing pathway			
Experiment	SSP2-4.5	SSP3-7.0		
Control	x ₁₁	x ₁₂		
Acquisitive	x ₂₁	x ₂₂		
Conservative	x ₃₁	x ₃₂		
Mean	x _{.1}	x _{.2}		
Variance	s ² ₁	s ² ₂		

2 forcing pathways to 2100:

	SSP2-4.5	SSP3-7.0
CO ₂ (ppm)	602.8	867.2
Warming (°C)	2.8	4.4

Projection: Trait sensitivity and forcing uncertainty in GPP

Projection: Trait sensitivity and forcing uncertainty in GPP

Projection: Trait sensitivity and forcing uncertainty in GPP

Projection: Trait sensitivity and forcing uncertainty in ANPP

Main takeaways

- Incorporating variability in foliar and phenology traits constrains carbon fluxes and improves representation of alpine tundra vegetation
- Plant trait uncertainty generally had a larger impact on productivity than climate scenario uncertainty, but the proportion varied between communities and carbon cycle metrics
- Trait uncertainty is likely being underestimated
- Next steps: Using FATES to allow communities and traits to change over time

Thanks for listening! katya.jay@colorado.edu

Model validation: Niwot Ridge LTER measurements

Jay et al. 2023

Uncertainty partitioning

Total uncertainty

Variance across the 6-member ensemble

Climate uncertainty

Variance of the GSWP3 and CRUNCEP multi-model means (x₁, x₂)

Model uncertainty

Average of the multi-model variances for GSWP3 and CRUNCEP (s²₁, s²₂)

This is equivalent to a fixed-effects single factor analysis of variance for k=2 groups with n=3 within each group

Bonan et al. 2019, Global Biogeochemical Cycles

Modifications to foliar, hydraulic, and photosynthetic parameters and soil properties

Parameter	Description	Units	Moist Meadow	Wet Meadow	Dry Meadow	Default
slatop ¹	specific leaf area	m²/gC	0.0215	0.029	0.015	0.0402
leafcn1	leaf C:N	gC/gN	19.6	17.7	18.5	28.03
ndays_on ²	# days to complete leaf onset	days	21	28	25	10
crit_onset_gdd_sf ²	scale factor modifying GDD	unitless	1	1	1.7	1
kmax	plant maximum conductance	mm H ₂ O/mm H ₂ O/sec	2.42E-09	2.42E-09	2.30E-10	2.42E-09
krmax	root maximum conductance	mm H ₂ O/mm H ₂ O/sec	8.05E-11	8.05E-11	2.05E-11	8.05E-11
jmaxb ₀	baseline proportion of N for electron transport	unitless	0.0225	0.0225	0.0225	0.0331
jmaxb ₁	response of electron transport rate to light availability	unitless	0.1	0.1	0.1	0.1745
froot_leaf	new fine root C per new leaf C allocation	gC/gC	1.5	1.5	2	2
d_max	dry surface layer thickness	mm	10	10	10	15
h_bedrock	depth to bedrock	m	1.3	1	1	
wat_sat	water saturation (porosity)	m^{3}/m^{3}			wat_sat/2	
organic ³	organic matter density	kg/ m ³	80.7	107.6	80.7	
sand ³	percent sand	%	49.3	44.4	49.3	
clay ³	percent clay	%	12.7	14	12.7	