Reactive nitrogen emissions
from agriculture: Model and
Mesocosm experiments

Jinmu Luo'?; Peter .G. Hess?; Steven .J. Hall’; Danica L. Lombardozzi*’

! Earth and Atmospheric Sciences, Cornell University;

2 Biological and Environmental Sciences, Cornell University;

3 Department of Plant and Agroecosystem Science, University of Wisconsin-Madison;
* Ecosystem Science and Sustainability, Colorado State University;

> National Center for Atmospheric Research.



Introduction

* NO, N,O and NH, emissions are the
1mport%1nt pathways for agricultural
nitrogen loss.

* NO emissions produce O,, which can
damage plants, is an impdrtant air
pollutant and a greenhouse gas.

* N.O 1s the third most important
greenhouse gas.

* NH, forms aerosols with impacts on
polfution and climate.

* Statistical and regression model has
limited ability to project future NH,, NO

and NzO emissions.

Pathways of Nitrogen Loss
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* Nitrogen flows and emissions often parameterized through the hole-in-the-pipe model (including the CLM)
* Emissions dependent on environmental variables.
* Model does not typically include NH, emissions.

Parton et al ., 2001; Van Martin et al., 2023



Nitrogen flows over Agricultural soil
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* FANV2 diagnoses NH, emissions
from agriculture from manure and
fertilizer inputs. It explicitly models
NH, flows and transformations in
top layer of CLM. (Vira et al., 2020,
2022).

* FANv3 extends FANv2 by coupling
FANvV2 to the CLM5.1 and the
hole-in-the-pipe model.
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* N Emissions sensitively dependent on diffusivity in soil

* FANV3 corrects problem in CLM diffusivity formulation

(Also impacts methane emissions)

* More NtoN,Oin denitrification, increases the N,O

emission.

e Areasonable NO to NZO ratio.



CLM-FANvV3 results evaluation

Are we getting this agreement for the wrong reason?
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Nitrogen cycle over agricultural soil
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Nitrogen cycle over agricultural soil
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Mesocosm observations set up (one site)
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Some discrepancies

Scil water content (10cm)
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* CLMS5.0*-FANv3 overestimates the soil moisture.
* Soil moisture is the critical parameter in determining the loss of N and the rates of nitrification/denitrification

Change the soil properties.
+15% sand
-10% clay



Single site model results evaluation
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This study mesocosm

* CLM-FANv3 simulates larger NO and N, O emissions than mesocosm and smaller losses from runoff and
harvest.



Nitrification rate is too small in the model
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* Mesocosm suggests most of NH," was nitrified to NO,” within two weeks.

* The model can’t reproduce the measured transformations between NH," and NO, following fertilization.



Conclusions

* We have developed a new coupled model (CLM-FANv3) that simulates
NH,, NO and N, O emissions, and global emissions consistent with
measurements.

* Reactive N emission 1s dominated by NH, , CLM detfault model and most
global models don’t simulate NH, emissions. NH, is an important part of
the nitrogen budget in agricultural soils.

* Future: Continued evaluation against mesocosm measurements and
refinement of parameterizations.



