On using an alternative snow thermal conductivity scheme in CTSM

Adrien Damseaux Heidrun Matthes Victoria Dutch Nick Rutter Leanne Wake

a Van Gogh painting of a globe over the Arctic

by Dall-E

Model setup

CTSM version 5.1.dev086	Compset 2000_DATM%GSWP3v1_CLM50% SP_SICE_SOCN_SROF_SGLC_SWAV	Grid Arctic domain above 57°N Icosahedral grid (240860 p) resolution = 12 km²
Atmospheric forcings ERA5 from1980-2021	Spin-up 30 years loop from 1980 to 1989	Snow parameter reset_snow = .true. h2osno_max = 800

Observation products

ESACCI products

In-situ observations

- From the ESA Climate Change Initiative
- Remote sensing products
- Domain resolution 1 km²
- Soil temperature (at 1, 5 and 10m), and ALT
- Year averages (1997-2019)
- Period averaged

- From Russia, Canada, USA, Norway and Europe
- 295 borehole stations
- Soil temperature at 300 different depths
- Monthly averages (1980-2021)
- At least 20
 measurements/month

Observation products

ESACCI products

In-situ observations

- From the ESA Climate Change Initiative
- Remote sensing products
- Domain resolution 1 km²
- Soil temperature (at 1, 5 and 10m), and ALT
- Year averages (1997-2019)
- Period averaged

- From Russia, Canada, USA, Norway and Europe
- 295 borehole stations
- Soil temperature at 300
 different depths
- Monthly averages (1980-2021)
- At least 20
 measurements/month

Soil temperature difference at -1 m CTSM – ESACCI full period year averaged

- More significant over Siberia, less over Canada
- Same in -5 and -10 m (additional slides)

Active Layer Thickness difference CTSM – ESACCI full period year averaged

Observation products

ESACCI products

In-situ observations

- From the ESA Climate Change Initiative
- Remote sensing products
- Domain resolution 1 km²
- Soil temperature (at 1, 5 and 10m), and ALT
- Year averages (1997-2019)
- Period averaged

- From Russia, Canada, USA, Norway and Europe
- 295 borehole stations
- Soil temperature at 300
 different depths
- Monthly averages (1980-2021)
- At least 20
 measurements/month

Soil temperature CTSM vs. 295 stations Stations and period average

• Cold bias presents at every seasons and every depth

Noah-MP - Zhang et al. 2019

The largest bias of the Ts, T1, T2, and T3 occurred in the high latitudes. The underestimation of d_{snow} and the weak snow insulation dependency on d_{snow} partly induced the cold bias in the high latitudes.

JSBACH (UKESM) - Ekici et al. 2014

of the model output (Fig. 11). Figure 12 shows the spatial pattern of this cold bias. In general, permafrost temperature differs from -2 to -5 °C, except in northern Yakutia where the

JULES (MPI-ESM)- Dankers et al. 2011

radically or only in isolated patches. Consistent with this we find a cold bias in the simulated soil temperatures, especially in winter. However, when compared with observations on

ISBA (CNRM) - Barrere et al. 2017

than 1 °C until snowmelt. ES produces soil temperatures up to 8 °C colder in winter, because it highly underestimates the snow thermal insulance (Fig. 7).

CLM5 (CESM) - Dutch et al. 2022

Simulated soil temperatures were considerably colder than observations (RMSE = 5.0 °C, bias = -2.2 °C), especially

Soil temperature difference at -1 m CTSM – ESACCI

11

Fresh snow density as a function of temperature and wind speed

Snow density (column-averaged) difference in January 2000

10

Our hypothesis

New function may have unintended consequences, making the overall snowpack too dense in the Arctic

Because CLM5 is not able to represent depth hoar (low density snow layers) Before CLM45 low density compensates the fact that was no depth hoar.

As snow density increase:
Increase the conductivity
Increase heat dissipation
Cools the soils in winter

Winter experiment Change snow scheme used to compute snow thermal conductivity

Want to apply what Dutch et al. (2022) have done to the Arctic region

The Cryosphere, 16, 4201–4222, 2022 https://doi.org/10.5194/tc-16-4201-2022 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

12

Impact of measured and simulated tundra snowpack properties on heat transfer

Victoria R. Dutch¹, Nick Rutter¹, Leanne Wake¹, Melody Sandells¹, Chris Derksen², Branden Walker³, Gabriel Hould Gosselin⁴, Oliver Sonnentag⁴, Richard Essery⁵, Richard Kelly⁶, Phillip Marsh³, Joshua King², and Julia Boike^{7,8}

¹Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
 ²Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
 ³Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Canada
 ⁴Département de géographie, Université de Montréal, Montréal, Canada
 ⁵School of Geosciences, University of Edinburgh, Edinburgh, UK
 ⁶Department of Geography and Environmental Management, University of Waterloo, Canada
 ⁷Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
 ⁸Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany

Correspondence: Victoria R. Dutch (victoria.dutch@northumbria.ac.uk)

Received: 29 September 2021 – Discussion started: 8 October 2021 Revised: 7 June 2022 – Accepted: 8 September 2022 – Published: 11 October 2022

Abstract. Snowpack microstructure controls the transfer of heat to, as well as the temperature of, the underlying soils. In situ measurements of snow and soil properties from four

erties and the corresponding heat flux is important, as wintertime soil temperatures are an important control on subnivean soil respiration and hence impact Arctic winter carbon fluxes Winter experiment Change snow scheme used to compute snow thermal conductivity

Want to apply what Dutch et al. (2022) have done to the Arctic region

13

Winter experiment Change snow scheme used to compute snow thermal conductivity

Want to apply what Dutch et al. (2022) have done to the Arctic region

ESA-CCI

Soil temperature bias: Control – Sturm run vs ESA-CCI

ALT difference: Control – Sturm run vs ESA-CCI

Control run

ESA-CCI

Soil temperature CTSM vs. 295 stations Stations and period average

- Cold bias resolved mostly in winter and in upper layers
- Overshoot in winter top layers

Main conclusions

Contact me at adamseau@awi.de

Github: <u>https://github.com/AdrienDams</u>

Thank you for staying until the end!

CTSM evaluation

- Multiple observations datasets shows a strong cold temperature bias over the Arctic, especially over Siberia
- · Cold bias presents at every seasons and every depth
- Active layer thickness is in strong agreement with ESACCI (slight overestimation over warm permafrost)

Sturm experiment

- Sturm scheme offsets the impact of increased density on soil temperatures
- · Cold bias resolved mostly in winter and in upper layers
- Strong warm bias over mountain areas (overshoot)
- · Slight ALT bias increase, but mostly over MA

Discussion

- Sturm is not adapted to all snowpacks. How can we include Sturm scheme in CLM5?
- •Using different schemes on glacier/land?
- •Using an altitude threshold for different schemes?