Atmospheric modulation of
evapotranspiration depends on
the climatological moisture
regime



ET impacts climate, and climate impacts ET
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ET impacts climate, and climate impacts ET

Atmosphere

AET — AClimate How does this
< - ——— - - == land-atmosphere feedback

modulate changes in ET?
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Most studies are not designed to disentangle land-atmosphere feedbacks
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Most studies are not designed to disentangle land-atmosphere feedbacks

Atmosphere Coupled framework alone:
] — includes land-atmosphere feedbacks
— does not disentangle how much of the net response is from
Land land-atmosphere feedbacks
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— does not account for land-atmosphere feedbacks
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Using paired perturbed parameter ensembles (PPEs) to isolate the impact of
atmospheric feedbacks

/
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Using paired perturbed parameter ensembles (PPEs) to isolate the impact of
atmospheric feedbacks

/

(PPEs):
- coupled: dynamic atmosphere
- land-only: atmosphere from coupled
default simulation

Atmosphere ] * Ran two perturbed parameter ensemble

Land

\_ )

/7 * Ran one-at-a-time simulations that perturbed
Atmosphere ] 18 land parameters to min and max values

\

-
Land . This study is using PPEs as a tool to learn about

land-atmosphere feedbacks (not a parameter
estimation/uncertainty study!)




Pairwise comparison of land-only and coupled simulations

ET changes in the Amazon

-

|

|

|

|

|
e

_15 -
|
—20¥ T ! T T
-20 -10 0 10 20

ALHland—only (W/m?)




Pairwise comparison of land-only and coupled simulations

ET changes in the Amazon

I
-20 '

S I | ¢ 0 10 20
ALHland—only (W/m?)



Pairwise comparison of land-only and coupled simulations

ET changes in the Amazon
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Atmospheric feedbacks dampen ET changes in the Amazon

ET changes in the Amazon
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Atmospheric feedbacks’ influence on ET varies spatially

ET changes.in.the Amazon Atmospherlc modulation of ET changes
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Slope of Linear Regression between Coupled and Offline
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Stippling indicates not statistically significantly different from 1



Budyko (1956) conceptual framework for constraints on land ET

THE HEAT BALANCE OF THE EARTH'S SURFACE

by M.I. BUDYKO

Translated by
Nina A. Stepan_va
Office of Climatology

from
(Teplovol balans zemnol poverkhnosti.
Gidrometeorologicheskoe izdatel'stvo,

Dependence of the evaporation and precipitation Lenéngrad, 19);55.
ratio on the radiational index of dryness. 55 pages




Budyko (1956) conceptual framework for constraints on land ET
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R,..= net radiation at the land surface; ET = evapotranspiration; P = precipitation; A = latent heat of vaporization



Budyko (1956) conceptual framework for constraints on land ET
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Budyko (1956) conceptual framework for constraints on land ET
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Budyko (1956) conceptual framework for constraints on land ET

Distribution of all land grid cells in our reference simulation in Budyko space
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Budyko (1956) conceptual framework for constraints on land ET

Distribution of all land grid cells in our reference simulation in Budyko space
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Potential evapotranspiration (PET) depends on more than net radiation

Distribution of all land grid cells in our reference simulation in Budyko space
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Influence of atmospheric feedbacks depends on the climatological moisture regime
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Dominant mechanism in wet
(energy-limited) regime:

{ Increase ET ]

'

\_

Increase relative
humidity

(7L

\

*{ Decrease VPD ]

J




Increase ET

'

\_

Increase relative
humidity

(7L

\

Dominant mechanism in wet
(energy-limited) regime:

Decrease PET

Decrease VPD

J




Total PET change

4 2 0 2 4

PET response to AETland—Orﬂy
(W/m?) / (W/m?)

Increase ET

\_

Increase relative
humidity

(7L

\

Dominant mechanism in wet
(energy-limited) regime:

Decrease PET

Decrease VPD

J




Total PET change

VPD contribution

S
-4 -2 0 2 4
PET response to AET
5 2|and—on|y
(W/m<) / (W/m?)

_ Net radiation contribution

~_
S
PN

N
N
N
N

e
-
e

Increase ET

\_

Increase relative
humidity

(7L

\

Dominant mechanism in wet
(energy-limited) regime:

Decrease PET

Decrease VPD

J




Increase ET

v

\_

Increase relative
humidity

(7L

\

Dominant mechanism in wet
(energy-limited) regime:

=)

Decrease PET

Decrease VPD

J




ET response to synthetic meteorology simulations
that decrease PET by decreasing temperature
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Dominant mechanism in dry
(moisture-limited) regime:
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Dominant mechanism in dry
(moisture-limited) regime:

Increase
precipitation

Increase ET

\_

Increase relative
humidity

(7L

J

Precipitation response to AET

coupled MESPONSE o ALH
(mm/yr) / (W/m?)

0 0 10

land-only



Dominant mechanism in dry
(moisture-limited) regime:
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Dominant mechanism in dry
(moisture-limited) regime:

Increase soil ET Response to +10% Precipitation
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Dominant mechanism in dry
(moisture-limited) regime:
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Linearly decompose different atmospheric drivers’ contribution to the feedback

Precipitation sensitivity to
land-only ET change

aPcoupled

aETland—only

Quantified by linear regression

ET sensitivity to
precipitation change

OET

apcoupled

Quantified using synthetic
meteorology simulations

ET modulation by
ET-precipitation feedback

aETcoupled - aETland—Onl}’

AET =
feedback,P aETland—Only



Linearly decompose different atmospheric drivers’ contribution to the feedback

AE Tfeedback = AE Tfeedback, P + AE Tfeedback, T + AE Tfeedback, q + AE Tfeedback, Sw + ..

Atmosphere

Temperature
Specific humidity

Precipitation (liquid and solid)
Downwelling shortwave radiation
Downwelling longwave radiation
Wind (zonal and meridional)
Pressure

Latent heat flux

Sensible heat flux

Water vapor flux

Momentum flux

Emitted longwave radiation
Reflected shortwave radiation



Our decomposition captures the dependence on moisture regime

Linear Reconstruction Actual
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Spatial variation mostly explained by temperature and precipitation
ET- Temperature Feedback

Linear Reconstruction
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Land-atmosphere feedbacks dampen ET changes in energy-limited
regions and amplify ET changes in some moisture-limited regions

- Energy-limited regions: Feedback driven by changes in PET
- Moisture-limited regions: Feedback where ET1 — precipitation?
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— Need to develop, evaluate, and benchmark land models in a coupled context



Atmosphere

Land

J Take home points

Land-atmosphere feedbacks dampen ET changes in energy-limited
regions and amplify ET changes in some moisture-limited regions

- Energy-limited regions: Feedback driven by changes in PET
- Moisture-limited regions: Feedback where ET1 — precipitation?

— Need to develop, evaluate, and benchmark land models in a coupled context

— Using a land-only framework to assess the ET response to any land surface change will
overestimate ET changes in wet places and underestimate ET changes in some dry places



