Atmospheric modulation of evapotranspiration depends on the climatological moisture regime

Claire Zarakas and Abigail Swann

Land

Land

Atmosphere

e.g., precipitation, vapor pressure deficit, net radiation

 $\triangle ET \rightarrow \triangle Climate$

 $\triangle Climate \rightarrow \triangle ET$

Land

Most studies are not designed to disentangle land-atmosphere feedbacks

Land-only framework alone:

- does not account for land-atmosphere feedbacks

Most studies are not designed to disentangle land-atmosphere feedbacks

Coupled framework alone:

- includes land-atmosphere feedbacks
- does not disentangle how much of the net response is from land-atmosphere feedbacks

Land-only framework alone:

- does not account for land-atmosphere feedbacks

Using paired perturbed parameter ensembles (PPEs) to isolate the impact of atmospheric feedbacks

- Ran two perturbed parameter ensemble (PPEs):
 - coupled: dynamic atmosphere
 - land-only: atmosphere from coupled default simulation
- Ran one-at-a-time simulations that perturbed
 18 land parameters to min and max values

Using paired perturbed parameter ensembles (PPEs) to isolate the impact of atmospheric feedbacks

- Ran two perturbed parameter ensemble (PPEs):
 - coupled: dynamic atmosphere
 - land-only: atmosphere from coupled default simulation
- Ran one-at-a-time simulations that perturbed
 18 land parameters to min and max values

This study is using PPEs as a tool to learn about land-atmosphere feedbacks (not a parameter estimation/uncertainty study!)

Pairwise comparison of land-only and coupled simulations

Pairwise comparison of land-only and coupled simulations

Pairwise comparison of land-only and coupled simulations

Atmospheric feedbacks dampen ET changes in the Amazon

Atmospheric feedbacks' influence on ET varies spatially

Stippling indicates not statistically significantly different from 1

THE HEAT BALANCE OF THE EARTH'S SURFACE

by M.I. BUDYKO

Translated by Nina A. Stepaniva Office of Climatology

from (<u>Teplovoĭ balans zemnoĭ poverkhnosti</u>. Gidrometeorologicheskoe izdatel'stvo, Leningrad, 1956. 255 pages)

Dependence of the evaporation and precipitation ratio on the radiational index of dryness.

Declassified in Part - Sanitized Copy Approved for Release @ 50-Yr 2013/10/28 : CIA-RDP81-01043R002500010003-6

Distribution of all land grid cells in our reference simulation in Budyko space

Distribution of all land grid cells in our reference simulation in Budyko space

Potential evapotranspiration (PET) depends on more than net radiation

Distribution of all land grid cells in our reference simulation in Budyko space

Influence of atmospheric feedbacks depends on the climatological moisture regime

ET response to synthetic meteorology simulations that decrease PET by decreasing temperature

Linearly decompose different atmospheric drivers' contribution to the feedback

Precipitation sensitivity to land-only ET change

Х

ET sensitivity to precipitation change

ET modulation by ET-precipitation feedback

 $\frac{\partial P_{coupled}}{\partial ET_{land-only}}$

Quantified by linear regression

Quantified using synthetic meteorology simulations

 ∂ET

 $\partial P_{coupled}$

 $\Delta ET_{feedback,P} = \frac{\partial ET_{coupled} - \partial ET_{land-only}}{\partial ET_{land-only}}$

Linearly decompose different atmospheric drivers' contribution to the feedback

$$\Delta ET_{feedback} = \Delta ET_{feedback,P} + \Delta ET_{feedback,T} + \Delta ET_{feedback,q} + \Delta ET_{feedback,SW} + \dots$$

Our decomposition captures the dependence on moisture regime

Change in ET due to atmospheric feedbacks (%)

Spatial variation mostly explained by temperature and precipitation

ET-Temperature Feedback

Change in ET due to atmospheric feedbacks (%)

Land-atmosphere feedbacks dampen ET changes in energy-limited regions and amplify ET changes in some moisture-limited regions

- Energy-limited regions: Feedback driven by changes in PET - Moisture-limited regions: Feedback where ET $\uparrow \rightarrow$ precipitation \uparrow

Land-atmosphere feedbacks dampen ET changes in energy-limited regions and amplify ET changes in some moisture-limited regions

- Energy-limited regions: Feedback driven by changes in PET - Moisture-limited regions: Feedback where ET $\uparrow \rightarrow$ precipitation \uparrow

 \rightarrow Need to develop, evaluate, and benchmark land models in a coupled context

Land-atmosphere feedbacks dampen ET changes in energy-limited regions and amplify ET changes in some moisture-limited regions

- Energy-limited regions: Feedback driven by changes in PET - Moisture-limited regions: Feedback where ET $\uparrow \rightarrow$ precipitation \uparrow

 \rightarrow Need to develop, evaluate, and benchmark land models in a coupled context

 \rightarrow Using a land-only framework to assess the ET response to any land surface change will overestimate ET changes in wet places and underestimate ET changes in some dry places