The global hydrologic response to land evapotranspiration-driven warming

Ben Buchovecky¹, Abigail Swann^{1,2}, Claire Zarakas¹, Hugo Lambert³, Marysa Laguë⁴

 ¹ Department of Atmospheric Sciences, University of Washington ² Department of Biology, University of Washington
³ Department of Mathematics and Statistics, University of Exeter
⁴ Department of Atmospheric Sciences, University of Utah

 The global mean hydrologic cycle is expected to amplify at 2 % K⁻¹

- The global mean hydrologic cycle is expected to amplify at 2 % K⁻¹
- Held & Soden (2006) proposed a simple scaling: $\delta(P - E) \approx \alpha \delta T_{S}(P - E)$

- The global mean hydrologic cycle is expected to amplify at 2 % K⁻¹
- Held & Soden (2006) proposed a simple scaling: $\delta(P - E) \approx \alpha \delta T_S(P - E)$
- Other papers extended this scaling to better represent the zonal pattern of $\delta(P E)$
 - Pietschnig et al. (2019), Byrne & O'Gorman (2015), Roderick et al. (2014)

Held & Soden (2006)

- The global mean hydrologic cycle is expected to amplify at 2 % K⁻¹
- Held & Soden (2006) proposed a simple scaling: $\delta(P - E) \approx \alpha \delta T_{S}(P - E)$
- Other papers extended this scaling to better represent the zonal pattern of $\delta(P E)$
 - Pietschnig et al. (2019), Byrne & O'Gorman (2015), Roderick et al. (2014)
- Is the hydrologic response to land ET-driven warming different than from CO₂ radiatively-driven warming?

Held & Soden (2006)

Suppressing evapotranspiration alters the global hydrologic cycle

- Idealized simulations with large-magnitude ET changes (Laguë et al., 2023)
 - Suppressed ET induces surface warming
 - SW cloud response
 - Column water vapor and residence time increases

Land Surface Temperatures vs. Land Evaporation

Suppressing evapotranspiration alters the global hydrologic cycle

- Idealized simulations with large-magnitude ET changes (Laguë et al., 2023)
 - Suppressed ET induces surface warming
 - SW cloud response
 - Column water vapor and residence time increases
- Do these processes hold across a range of smaller ET perturbations?

Land Surface Temperatures vs. Land Evaporation

Leveraging the coupled PPE to examine small evapotranspiration perturbations

• Surface temperature change is driven by ET, not albedo

Leveraging the coupled PPE to examine small evapotranspiration perturbations

 Surface temperature change is driven by ET, not albedo

Leveraging the coupled PPE to examine small evapotranspiration perturbations

 Surface temperature change is driven by ET, not albedo

Leveraging the coupled PPE to examine small evapotranspiration perturbations

- Surface temperature change is driven by ET, not albedo
- This is an emergent feature of the PPE:

greater parametric uncertainty in representing ET than representing albedo

Range of percent change in surface albedo

60

60

0.50

0.25

0.00

-0.25

-0.50

Land-ocean contrasts further display different regimes over land and ocean

Land-ocean contrasts further display different regimes over land and ocean

Land-ocean contrasts further display different regimes over land and ocean

Precipitation responds oppositely over land

Precipitation responds oppositely over land

21

Shortwave cloud response contributes to land surface temperature change

Shortwave cloud response contributes to land surface temperature change

Shortwave cloud response contributes to land surface temperature change

0.6

0.3

0.0

-0.3

-0.6

[frac

 $\Delta T_{2m,L}$ [K]

Other curious but unrelated results! Fixing vapor pressure deficit near zero causes Amazon "die-off" and new vegetation stable state

Tropical leaf area decreases in first 5 years, then reaches new stable state

Decrease in leaf area driven by increase in water stress

Low VPD increases water stress causing a large decline of leaf area in tropical rainforests, which *persists as a new stable state even when the water stress alleviates.*

