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Motivation

= The Greenland ice sheet’s contribution to sea level rise has been increasing and is expected to
Increase in a warmer climate

= A changing Greenland ice sheet can affect the local climate

= In most of the sea level projections the effect of these ice sheet-climate interactions is not
taken into account

= |ce sheet-climate interactions might influence the response of the Greenland ice sheet to
climate mitigation

.
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Motivation

= The Greenland ice sheet’s contribution to sea level rise has been increasing and is expected to
Increase in a warmer climate

= A changing Greenland ice sheet can affect the local climate

= In most of the sea level projections the effect of these ice sheet-climate interactions is not
taken into account

= |ce sheet-climate interactions might influence the response of the Greenland ice sheet to
climate mitigation

= What is the effect of accounting for ice sheet-climate interactions on the Greenland climate and
the projected sea level rise?

= Whatis the role of ice sheet-climate interactions in a CO, reduction scenario?
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Coupling in CESM2-CISM?2

= 2-way coupling between CISM, CAM and
CLM

= 1-way coupling between CISM and POP topography
= SMB is computed by CLM

= Downscaling to CISM by using
elevation classes CISM2.1 — POP

CISM2.1 — CAM6
dynamic ice sheet

freshwater influx

/ CLM5 — CISM2.1

CISM2.1— CLM5 SMB

. . dynamic ice margin

- 1-Way cou pled simulation S / X (enziyeﬁl)ance
= Fixed topography in CAM and CLM [ e el \ \ v’

- Fixed freshwater fluxes M'

= Lapse rate of -6 K/km for downscaling

to CISM grid

%
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Comparing 1-way and 2-way coupling: 4xCO, scenario
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= 1% CO, increase from 1xPI to 4xPI |

concentrations (year 1-140) 120{}5
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= Comparison between 1-way and 2-way

coupled simulation 8001

600

= Investigate the effect of interactions and
feedbacks between the GrlS and the
climate on GrlS mass loss
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Mass balance evolution
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= 17% larger SLR in 1-way coupled simulation
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Mass balance evolution
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= 17% larger SLR in 1-way coupled simulation
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= Caused by difference in surface mass balance
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Mass balance evolution

= 17% larger SLR in 1-way coupled simulation
= Caused by difference in surface mass balance

= Why?
= Representation of melt-elevation feedback

= Some feedbacks are not represented in 1-way
coupled simulations
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Representation of the melt-elevation feedback: temperature
lapse rates
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Representation of the melt-elevation feedback: temperature
lapse rates

= 2-way coupled: seasonality

Temperature lapse rate [K km™!]
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Representation of the melt-elevation feedback: temperature

lapse rates

= 1-way coupled: -6 K/km
= 2-way coupled: seasonality

= Melting surface
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Representation of the melt-elevation feedback: temperature

lapse rates

= 1-way coupled: -6 K/km
= 2-way coupled: seasonality

= Melting surface

= Qverestimation of melt-elevation feedback

in 1-way coupled simulation
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Shortwave radiation . w®
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Precipitation

(b) Snowfall (c) Rainfall
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- Comparison in year 500 (2-way minus 1-way) {a) Preclpitation

= Increased snowfall in accumulation area (negative
feedback)

= Increase in relative amount of rainfall (positive
feedback)
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Atmospheric blocking

= Recent increases in summer blocking linked to
increased melt

= Strong decrease in blocking as a result of
topographic changes

= Linked to 49% of SMB differences

= Negative feedback on melt
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Conclusion: effect of using 2-way coupling

= Lapse rate of -6 K/km does not represent
melt-elevation feedback well

= A changing GrlS topography results in:
= More reflection of shortwave radiation
= Precipitation increase

= Summer atmospheric blocking decrease

= Not accounting for or parameterizing
feedbacks leads to an overestimation of melt

%
TUDelft




Greenland ice sheet response to CO, reduction

= First 350 years: 4xCO, simulation

1200

= Between 350 and 377: annual 5% decrease

lDDD-
until pre-industrial CO, is reached '
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Temperature response
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Temperature response

= Remaining 2 K global warming

= GrlS experiences complex transitional phase

= Delayed overshooting recovery of North Atlantic
Meridional Overturning Circulation
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GrIS mass loss response

= Mass loss is halted despite 2 K remaining

warming

= Why?
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GrIS mass loss response
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= Mass loss is halted despite 2 K remaining E
warming g
% 2000

£
- Why') 3 1000
= SMB does not recover 0

= GrlIShaslost 1.2 m SLE

1000

= Therefore: small ice discharge due to retreated
margins

Annual mass balance components [Gt yr—1]
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The surface mass balance does not recover

= Refreezing peaks at lower level after CO,

reduction
= Thinner snowpack

= Higher snow temperatures
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The surface mass balance does not recover

= Refreezing peaks at lower level after CO,
reduction

= Thinner snowpack

= Higher snow temperatures

= Albedo in the ablation area does not recover
under remaining 2 K warming
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Conclusion: GrIS response to CO, reduction

. . . Atmospheric
= Ocean interactions play an important role srow (C  crvorer
during the transition phase sw

= Surface mass balance does not recover

= Reduced discharge due to retreated ice sheet

= Sea level rise can be halted despite 2 K h &
remaining warming
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