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INtro:
what we are interested In
and what we know?



Aim of the study and previous results

Long-term evolution and stability of the Greenland Ice Sheet:
* |dentify SMB thresholds for GrlS complete melt;
» Existence of tipping point for the GrlS (thresholds for significant change);

* Processes controlling thresholds, patterns and timescales for GrlS melt;
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Aim of the study and previous results

Long-term evolution and stability of the Greenland Ice Sheet:
* |dentify SMB thresholds for GrlS complete melt;
» Existence of tipping point for the GrlS (thresholds for significant change);

* Processes controlling thresholds, patterns and timescales for GrlS melt;

What we know:
 Robinson et al. 2012: sharp threshold behaviour for GrIS complete melt;
* Gregory et al. 2020: wide range of equilibrium states;

 GMT thresholds for GrlS full deglaciation between 2.2-3.2 K;

 GMT threshold was likely not passed during the Eemian (GrlS loss < 4 m SLE);
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Methods: multiple Elevation
Classes SMB forcing



Starting point: fully coupled CESM/CISM 1pct-COz2 run N
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* CO2zincreases by 1% until reaching 4x pre-ind.;
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GrlS initial SMB forcing (Gt/yr)
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* New CESM capability: coupling with CISM,
advanced SMB calculation and downscaling ;

* Fully coupled global climate and GrlS simulation
Under high CO2 forcing (Muntjewerf et al. 2020);

* CO2zincreases by 1% until reaching 4x pre-ind.;

 From this run, we select multiple time intervals
corresponding to different levels of SMB/GMT;

 Each time interval contains a climatology of
SMB forcing at multiple Elevation Classes;

 Each SMB interval used to force CISM, cycling
forcing until GrlS equilibrium or deglaciation;

* Multiple Elevation Classes SMB forcing:
how does it work and why it is important?



Elevation-dependent SMB: multiple elevation classes

Glacier column in GLMS SMB calculation in CESM:
 CLMS5: Surface air temp. downscaled to 10 ECs (lapse rate 6 K/km);

« CLMS5: for each EC, surface-energy-balance scheme for SMB,
SMB = snowfall + refreezing - snow_melt - ice_melt - sublimation,

* annual mean SMB at each EC saved in coupler history files;

. 4

CISM runs in this study:
* Forced with coupler history files from coupled 4xCOQO:2 run;
« SMB downscaled based on CISM surface topography;

* Account for SMB changes due to surface topography changes;
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Results #1: SMB threshold,
non-linearity & driving processes



Positive (>0) SMB threshold for GrlS deglaciation

* Three main final GrlS states for close initial SMB forcing levels:

(1) > 80% (SMB > 31797 Gtlyr), (2) ~50% (SMB 286+94 - 255+83 Gt/yr), (3) < 20% (SMB < 23084 Gt/yr);
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Highly non-linear GrlS response to sustained warming

GrlS equilibrium volume (m SLE)
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* For small change in SMB forcing, strongly nonlinear
GrlS response): tipping point behaviour!

« SMB threshold for GrlS deglaciation is positive, 60%
decrease from pre-industrial SMB;

* Tipping run: +3.4 K (transient) warming than pre-ind.
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SMB-height feedback: not only a positive feedback!

GrlS integrated SMB (Gt/yr)
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* For small change in SMB forcing, strongly nonlinear
GrlS response): tipping point behaviour!

« SMB threshold for GrlS deglaciation is positive, 60%
decrease from pre-industrial SMB;

* While initial SMB forcing >0, GrlS deglaciation
when SMB becomes and remains negative!



SMB-height feedback: not only a positive feedback! NE
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e Close to SMB threshold, GrlS does not reach
equilibrium: quasi-periodic oscillations!

« SMB-height feedback responds to ice thinning
(surface melt) and bedrock uplift (GIA)!
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Impact of GIA on the GrlS response
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Results #2:

lopographic control on the
SMB threshold



GrlS retreat patterns A -4

BJERKNES CENTRE

for Climate Research

Ice thickness (km)

—

 >80% volume: retreat limited to south-western margin;
« ~50% volume: retreat at south-western and northern margins, central-western margin stays close to the coast;
 <20% volume: ice remaining only at the eastern margin, isolated ice caps in the south and north;

e How does the transition 50% —> 20% volume occur?



GrlS evolution ‘before’ tipping A -+
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 +3.2 Krun (50% volume): central-western margin close to the coast, connecting again after re-advance;
* Highlighted region in the central west: high bedrock topography and SMB;



GrlS evolution “after’ tipping

+3.4 K run, year 0
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 +3.4 Krun (~20% volume): after 20 kyrs, central-western margin not able to re-advance to the coast:
tipping point is passed, runaway retreat towards east (higher forcing: same pattern, shorter timescales).

 GrlIS behaviour at central western margin: a predictor for long-term, substantial ice loss?



Topographic control on the SMB threshold L
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Paleo analogue: GrlS during the Last Interglacial

Eemian run, 122 ky BP +3.2 K run +3.4 K run
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climate and GrIS
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Interglacial (Sommers
et al. 2021)

e GrlIS minimum volume around 122 kyrs BP: similar, ‘pre-tipping’ ice sheet configuration;

* Might be worth exploring potential tipping points across the Last Interglacial?



Conclusions
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What?

Existence of a SMB threshold for GrIS complete melt, processes controlling this threshold, and
associated GrlS tipping point behaviour (small change in SMB forcing —> strongly nonlinear response);

How?

CISM simulations forced with different levels of SMB, previously calculated at multiple Elevation
Classes in a fully coupled CESM/CISM simulation of the global climate and GrlS (Muntjewerf et al. 2020);

Key take-home messages:

* Positive SMB threshold for complete GrlS melt: 230+84 Gt/yr (60% decrease from pre-ind. value);
* Highly non-linear response: competing effect of surface melt and GIA (SMB-height feedback);

* Topographic control: GrlS tipping when its CW margin unpins from coastal region with high elevation;
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Thank you for the attention! mpet@norceresearch.no
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GrlS integrated SMB (Gt/yr)
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127.00 ky BP
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