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Lake Mead Water Level Update
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After reaching its minimum annual elevation of 1050 feet in 2022, Lake Mead exhibited an increase of 8 feet
in 2023.



Background 1: Red-noise process
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Background 2: Central-Limit Theorem

e Linear versus non-linear model

y=x+x*+e¢€

e Central-Limit Theorem (CLT) — effect of averaging

CLT states that the distribution of the sum (or
average) of a large number of independent,
identically distributed random variables
approaches a normal (Gaussian) distribution,
regardless of the original distribution of the
individual variables.
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A Red Spectrum of Soil Moisture Variability in the US Southwest
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Many different names and manifestations:
Underestimation of low-frequency precipitation variability
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The problem has continued through generation of climate models
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Evaluating Global Climate Models for Hydrological Studies of the Upper Colorado
River Basin

David W. Pierce, Daniel R. Cayan, Jordan Goodrich, Tapash Das, and Armin Munévar

Research Impact Statement: The latest CMIP6 generation of climate models still have biases in the Upper
Colorado River Basin but show clear improvements over previous generations after a simple bias correction is
performed.

ABSTRACT: Three generations of global climate models (GCMs), Coupled Model Intercomparison Project ver-
sion 3 (CMIP3), CMIP5, and CMIP6, are evaluated for performance simulating seasonal mean and annual-to-
decadal variability of temperature and precipitation in the Upper Colorado River Basin. Low-frequency precipi-
tation variability associated with drought is a particular focus and found to be a significant model shortcoming.
The evaluation includes remote teleconnected atmospheric responses to the Pacific Ocean, including the El
Nino/Southern Oscillation and Pacific Decadal Oscillation. GCMs have improved their simulation of the Upper
Basin over model generations, but primarily in atmospheric circulation metrics. Persistent winter precipitation
biases have changed little, including in multiyear precipitation variability. Users generally bias-corrected GCM
data before use; evaluation using a simple spatially and temporally averaged bias correction shows that the
CMIP6 models outperform earlier generations after the bias correction, although more complex precipitation
biases remain even after the simple bias correction. These model rankings will be useful when selecting GCMs
for a variety of hydrological and ecological climate studies in the Upper Basin.
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ABSTRACT

Low-frequency internal climate variability (ICV) plays an important role in modulating global surface tempera-
ture, regional climate, and climate extremes. However, it has not been completely characterized in the instrumental
record and in the Coupled Model Intercomparison Project phase 5 (CMIPS) model ensemble. In this study, the
surface temperature ICV of the North Pacific (NP), North Atlantic (NA), and Northern Hemisphere (NH) in the
instrumental record and historical CMIP5 all-forcing simulations is isolated using a semiempirical method wherein
the CMIP5 ensemble mean is applied as the external forcing signal and removed from each time series. Comparison
of ICV signals derived from this semiempirical method as well as from analysis of ICV in CMIP5 preindustrial
control runs reveals disagreement in the spatial pattern and amplitude between models and instrumental data on
multidecadal time scales (=20 yr). Analysis of the amplitude of total variability and the ICV in the models and
instrumental data indicates that the models underestimate ICV amplitude on low-frequency time scales (=20 yr in
the NA: =40 yr in the NP), while agreement is found in the NH variability. A multiple linear regression analysis of
ICV in the instrumental record shows that variability in the NP drives decadal-to-interdecadal variability in the NH,
whereas the NA drives multidecadal variability in the NH. Analysis of the CMIPS5 historical simulations does not
reveal such a relationship, indicating model limitations in simulating ICV. These findings demonstrate the need to
better characterize low-frequency ICV, which may help improve attribution and decadal prediction.

Journal of Climate



A Reddened ENSO Framework

Model 1: Memory + ENSO Model 2: ENSO only
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A Reddened ENSO model (Model 1) to predict inter-annual soil moisture variability
and its comparison with the ENSO-only model (Model 2)

Assumption: ENSO is accurately predicted for the given year (taken either from observation or the climate
model’s Large ensemble data).

Kumar, Dewes et al. (2023); Earth’s Future Matt Newman, NOAA



How good is the Reddened ENSO Model in comparison
to the dynamical prediction system, e.g., SMYLE?
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Answer — Equally good or even better!

Caveat: Only the top 10 cm soil moisture data is available from SMYLE

Yanan Duan, AU



Can the ENSO-Only model usefully predict inter-annual
hydroclimate variability in North America?
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Answer — No (using the scale shown)!




Why do climate models underpredict low-frequency
hydroclimate variability?
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Answer: Too much reliance on ENSO in climate models (~90%) leads to underestimation
of low-frequency hydroclimate variability compared to the observations (50%).



A Land-Atmosphere Interaction Hypothesis

A relatively whiter atmospheric variability input, e.g., precipitation is
reddened by the land-atmosphere interaction processes, e.g., soill
moisture memory and reemergence, resulting in a long-term variability in
hydroclimatic observations, e.g., soil moisture, streamflow, and reservoir-level
data. Contrary, if we remove the land-atmosphere interaction effects,
then redness in hydroclimatic data goes away.

Model 1: Memory + ENSO Model 2: ENSO only
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Implications on predictability across scales

[a] Control

CLMD5 offline run
using CFSR forcings:
(a) Control (OBS),
and (b) Randomized
forcing
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Same as above using
CESM2-LE data => look closer
to the randomized run than
the control run (=> a weak soil
moisture to precipitation
feedback loop in CESM?2)



Summary: A Land-Atmosphere Interaction Hypothesis

A relatively whiter atmospheric variability input, e.g., precipitation is
reddened by the land-atmosphere interaction processes, e.g., soill
moisture memory and reemergence, resulting in a long-term variability in
hydroclimatic observations, e.g., soil moisture, streamflow, and reservoir-level

data. Contrary, if we remove the land-atmosphere interaction effects,
then redness in hydroclimatic data goes away.
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