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Machine learning and interpretability

• Machine learning shows promising prediction skill of ENSO.

• However, it is challenging to explain what the “black box” does.
1. XAI is a post hoc explanation of the black box
2. There is no ground truth for the attribution
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Explanations from different xAI methods for 
classifying atmospheric rivers (Mamalakis et al. 2022)



“Model-Analog” forecasts
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Anomaly correlation of SST forecast at 6 months lead

Model-analog NMME (dynamical models)

Ding et al. (2018)

• Forecasts based on resembling states (e.g., Lorenz 1969)

• Model-analog provides a comparable hindcast skill to dynamical models



Issue: Initial analogs can evolve to very different states

Target

Analog forecasts

Initial condition

12 months

Analogs (closest conditions)

12 months

Analogs based on the entire tropical region.
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Small errors can grow significantly??



Aim: Use deep learning to constrain error growth
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Input: initial condition Output: weights used to select analogs

Deep 
learning

Train DL to find “sensitive region” where initial error growth is significant



Hybrid deep learning and model-analog (DL + MA)
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Input: initial condition Output: weights used to select analogs

Analog forecasting

Interpretability

• Estimated weights show important (sensitive) regions.
Objectively evaluated by forecasting skill

• Analog forecasting provides evolution of the entire system.
Fully based on physical models

Deep 
learning



Data: Large-ensemble simulation

CESM2 (climate model)

• 1850–2014, 100 ensembles
• Monthly anomaly
• Sea surface temperature (SST)
• Sea surface height (SSH)
• Zonal wind stress (TAUX)
• 50°S–50°N

Period Sample size
Training 
(library)

1865–1958 94 y × 100 (70%)

Validation 1959–1985 27 y × 100 (20%)
Test 1986–1998 13 y × 100 (10%)
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4-layer U-Net
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Target: SST pattern over the equatorial Pacific
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Target: SST pattern

Initial conditions

Seasonal-to-annual



10% improvements at 9-12 month lead
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More weights are assigned to 
regions outside the target area 



Comparable skill to an equivalent DL-only method
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DL-only method

• Same network except for the last layer which 
predicts equatorial Pacific SST directly.

• Needs to be trained for each lead.

The hybrid method enhances interpretability and captures the time evolution of entire system 
without compromising DL skill.



The hybrid approach accelerates skill in region with large variability
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12 month lead

Difference



Seasonal skills
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Significantly improves 6-18 months forecasts



Improvements in precipitation forecasts
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Once analogs are identified, forecasting can be extend to any field available.

Improvements



Application to observations

Period Sample size
1987-202

0
34 y

Period Sample size
Training 
(library)

1865-1958 94 y × 100 (70%)

Validation 1959-1985 27 y × 100 (20%)
Test 1986-1998 13 y × 100 (10%)
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Training
CESM2

Validation
CESM2

Test
ORAS5

Test
CESM2

Perfect model
Hindcast



Hindcast results
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Better improvements for extreme events

17

Light background: > 0.5 σ
Dark background: > 1 σ
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Better improvements for extreme events
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Light background: > 0.5 σ
Dark background: > 1 σ
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Application to observations



Analyzing “sensitive regions”
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Weights

Deep 
learning



“Sensitive regions” are linked to various physical processes
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• SST ∼ SSH > TAUX

• SST: Off-equatorial weights
        Pacific meridional modes

• SSH: Thermocline slope

Recharge-discharge state

• TAUX: Westerly wind event

Mean weights of all events (n = 1300)



Asymmetry in El Niño and La Niña forecasts
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SST

SSH

TAUX



Conclusions

• Deep learning improves analog ENSO forecasting by 10%.
• Better improvements for forecasting extreme events.

• This approach provides interpretability to deep learning.
• For El Niño forecast: Pacific SST is more sensitive.
• For La Niña forecast: Pacific wind stress is more sensitive.

• Broad implications for forecasting diverse climate phenomena.
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Contact: Kinya Toride (kinya.toride@noaa.gov)
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Network architecture
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Input: initial condition (5° × 5°) Output: weights (5° × 5°)

Weighted initial distances 
of all samples

True forecast errors 
of the subsamples

9,400 samples

Weighted initial distances 
of the subsamples 188 samples

Update

188 samples

Loss

Extract the top 2% 

U-Net



Network size
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UNet: 4-layer with initial channel size of 256 

256

512

1024

2048
1024

512

256

Channel = number of kernels used in convolution

e.g.) a color image has 3 channels (RGB)



Do we need to train the model for each lead time?
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Variable decomposition

SST > SSH > TAUX
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Probabilistic skill

 

Reliability = flatness of the rank histogram
Resolution = spreads

Decomposition of CRPS (Hershbach 2000)



4-layer 
U-Net

Input
72 × 21 × 3 

Conv 3 × 3, ReLU 
72 × 21 × 256

Conv 3 × 3, ReLU 
72 × 21 × 256

Max pooling 2 × 2
36 × 10 × 256

Conv 3 × 3, ReLU 
36 × 10 × 512

Conv 3 × 3, ReLU 
36 × 10 × 512

Max pooling 2 × 2
18 × 5 × 512

Conv 3 × 3, ReLU 
18 × 5 × 1024

Conv 3 × 3, ReLU 
18 × 5 × 1024

Max pooling 2 × 2
9 × 2 × 2048

Conv 3 × 3, ReLU 
9 × 2 × 2048

Conv 3 × 3, ReLU 
9 × 2 × 2048

Conv 3 × 3, ReLU 
18 × 5 × 1024

Conv 3 × 3, ReLU 
18 × 5 × 1024

Up-conv 2 × 2 
18 × 5 × 1024

Conv 3 × 3, ReLU 
36 × 10 × 512

Conv 3 × 3, ReLU 
36 × 10 × 512

Up-conv 2 × 2 
36 × 10 × 512

Conv 3 × 3, ReLU 
72 × 21 × 256

Conv 3 × 3, ReLU 
72 × 21 × 256

Up-conv 2 × 2 
72 × 21 × 256

Conv 1 × 1 
72 × 21 × 3
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