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The Seasonal-to-Multiyear
Large Ensemble (SMYLE),
created using the Community
Earth System Model Version 2
(CESM2), consists of 20
ensemble members initialized
four times per year (Feb, May,
Aug, Nov).
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SMYLE predicted a
‘Super El Nino’* event
(2.2-2.4° C) for DJF 2023
in February, May, and
August initializations.

What conditions caused
this?

Average Nino 3.4 Index for December, January & February
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=== Actual conditions in the Tropical Pacific

Conditions forecast four months in advance using the
Seasonal-to-Mulityear Large Ensemble (SMYLE)
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Average Nifio 3.4 Index for December, January & February

However,
peak

2023 SMYLE

amplitude fell

forecast

short for DJF 1970 1980 1990 2000 2010 2020

=== Actual conditions in the Tropical Pacific

Conditions forecast four months in advance using the
Seasonal-to-Mulityear Large Ensemble (SMYLE)
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El Niio precursors were
apparent from
observational platforms
as early as February
2023. Was SMYLE able
to resolve precursors?

Average Nino 3.4 Index for December, January & February
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=== Actual conditions in the Tropical Pacific

Conditions forecast four months in advance using the
Seasonal-to-Mulityear Large Ensemble (SMYLE)
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Was SMYLE able

What conditions caused
this?

Average Nifio 3.4 Index for December, January & February

to resolve precursors?

Focusing
on
2023 SMYLE
forecast Research
1970 1980 1990 2000 2010 2020 Objective
=== Actual conditions in the Tropical Pacific #2
Conditions forecast four months in advance using the
Seasonal-to-Mulityear Large Ensemble (SMYLE)
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The spring
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Even amidst the SPB, SMYLE produced

skillful El Nino predictions




Risbey et al. 2021 states that hindcasts may have unrealistic skill because they use data that would be
unavailable during real-time forecasting, specifically the climatology to derive anomalies

SST Anomaly

SST Anomaly
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Risbey et al. 2021 states that hindcasts may have unrealistic skill because they use data that would be

unavailable during real-time forecasting, specifically the climatology to derive anomalies

SST Anomaly
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Integrated Warm

Water Volume

 Proxy for equatorial
Pacific heat content

 Integration boundary is
the 20° C isotherm

Data for WWYV courtesy of the Bureau National Operations Centre (BNOC) at the Australian Bureau of Meteorology and the Pacific Marine Environmental Laboratory
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What El Nino precursors
are we interested in
examining?

ROI: Region of Interest
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« Proxy for equatorial o " :
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{ Warm Water Volume Anomalies 2000 — 2024, why are they important? }

| o5 -Lel5 Western Pacific Warm Water Volume Anomalies
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207 oscillator ENSO theory i
1.85 1997, Mantua and Battisti 1994, Sheinbaum 2003,
1” Wyrtki 1985)
§ 180 « ENSO prediction skill
s increased once ocean heat
S 170 content (OHC) was
T% 1.65 iIlClUded iIl mOdGIS (Clarke and
> Van Gorder 2003, Ji et al. 1998, McPhaden 2003)
1.60
1.554 —— wwv

---- Seasonal Cycle
1.50 1 1 1 1 1
2000 2004 2008 2012 2016 2020 2024
Year

Observations Slide 13



Western Pacific Warm Water Volume Anomalies

lel5

{ Warm Water Volume Anomalies 2000 — 2024, why are they important? }
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What El Nino precursors
are we interested in
examining?

Westerly Wind Bursts

 Zonal wind perturbations
that cause a weakening or
reversal of the equatorial
trade winds

» ‘Trigger events’ to El Nifo
due to large, localized
accelerations (cronin and McPhaden

2002)

« Misunderstood, lack of long
observational record
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{ Westerly Wind Bursts 2 Seen from TPOS Moored Array }

Scalar Wind Speed in Western Equatorial Pacific
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{ Westerly Wind Bursts 2 Seen from TPOS Moored Array }

Scalar Wind Speed in Western Equatorial Pacific
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Westerly Wind Bursts =2 Seen from TPOS Moored Array

Wind Direction in Western Equatorial Pacific
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Does SMYLE
predict an El Nino
event during the
Feb initialization?

SMYLE Shide 19



SMYLEO2 Sea Surface Temperature Anomaly Nifio 3.4 Region

2.5

Yes — SMYLE predicted a max
SSTA of 2.2° C

A quick transition from La
Nina to El Nifio conditions

Sea Surface Temperature Anomaly (C)

occurs from boreal winter to 10l | | | | | | | |
summer 0 X Y| A oY 9 ol A0 oY
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from July to October 2024?




" Does SMYLE resolve El
Nino precursors during
the February
_ initialization?

~
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SMYLE
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{ SMYLE Total Horiz. Wind Speed with Buoy Proxy — Mean Ensemble }

Increase in horizontal
wind speed in western
Pacific

SMYLE Total Horizontal Wind Speed Maximum - Buoy Comparison
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{ SMYLE Total Horiz. Wind Speed with Buoy Proxy — Mean Ensemble }

SMYLE Total Horizontal Wind Speed Maximum - Buoy Comparison
— 0,180 W
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« SMYLE peak at 0,
170W and buoy peak at
0,180 W

Total Wind Speed Maximum (m/s)
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{ SMYLE Total Horiz. Wind Speed with Buoy Proxy — Mean Ensemble }

SMYLE Total Horizontal Wind Speed Maximum - Buoy Comparison
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Derived SMYLE Wind Direction with Buoy Proxy

Preliminary SMYLE - Wind Direction at Proxy for 0,165 E Buoy
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Derived SMYLE Wind Direction with Buoy Proxy

SMYLE - Wind Direction at Proxy for 0,165 E Buoy Westerly w1nd
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Derived SMYLE Wind Direction with Buoy Proxy

SMYLE - Wind Direction at Proxy for 0,165 E Buoy
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{ Future Work }

Compute SMYLE ocean heat content
and wind direction across ensemble
members

Future Work Slide 28



{ Future Work }

Compute SMYLE ocean heat content
and wind direction across ensemble
members

Compare February and May
initializations to determine skill
differences during the SPB
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{ Future Work

Compute SMYLE ocean heat content
and wind direction across ensemble
members

Compare February and May
initializations to determine skill
differences during the SPB

Investigate how far back SMYLE
predicts El Nifo onset, materialization,
and magnitude (i.e., SMYLE initialized

in 2022)

Future Work
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{ Future Work }

Compute SMYLE ocean heat content
and wind direction across ensemble
members

Compare February and May
initializations to determine skill
differences during the SPB

Investigate how far back SMYLE
predicts El Nifo onset, materialization,
and magnitude (i.e., SMYLE initialized

in 2022)
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Emily Wisinski —
ecewisinsk@umd.edu

Dr. Maria Molina —

mymolina@umd.edu
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Any questions on WWhat EI Nifio precursors

https://www.pmel.noggaeE@¥ interested in
elnino/upper-ocean-heat- examining?
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https://www.pmel.noaa.gov/elnino/upper-ocean-heat-content-and-enso
https://www.pmel.noaa.gov/elnino/upper-ocean-heat-content-and-enso
https://www.pmel.noaa.gov/elnino/upper-ocean-heat-content-and-enso

{ Westerly Wind Bursts 2 Seen from TPOS Moored Array }

Scalar Wind Speed in Western Equatorial Pacific / \
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k Daily zonal wind anomaly > 0.5 m/ SJ
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