

CESM Working Group Meetings 2024

Computationally efficient method for predicting evapotranspiration using a Gaussian Process Regression Emulator

Thomas **Kavoo** Climate, Water and Society Lab - CFWE, Auburn University 2/29/2024

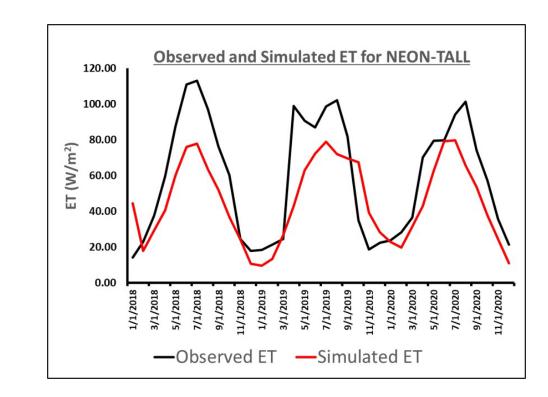
Advisor: Sanjiv Kumar

Background

- Process-based Land surface models (LSMs) are pivotal in understanding the changing climate system
- Understanding Evapotranspiration (ET)
 - ET is the linkage between carbon, water, and energy cycles.
 - Sixty-five percent of annual precipitation returns back to the atmosphere as ET

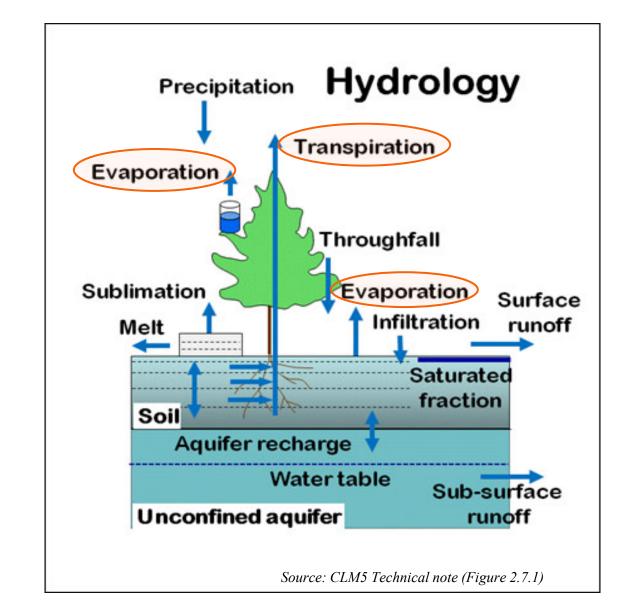
Motivation and Overview

- Current representations of land surface processes in LSMs exhibit uncertainties.
- Need for more accurate climate projections and understanding climate-carbon feedback.
- Better representation -> More details -> Increase computational demands.
- Robust and computationally efficient models (emulators) are essential for scalability and practicality.

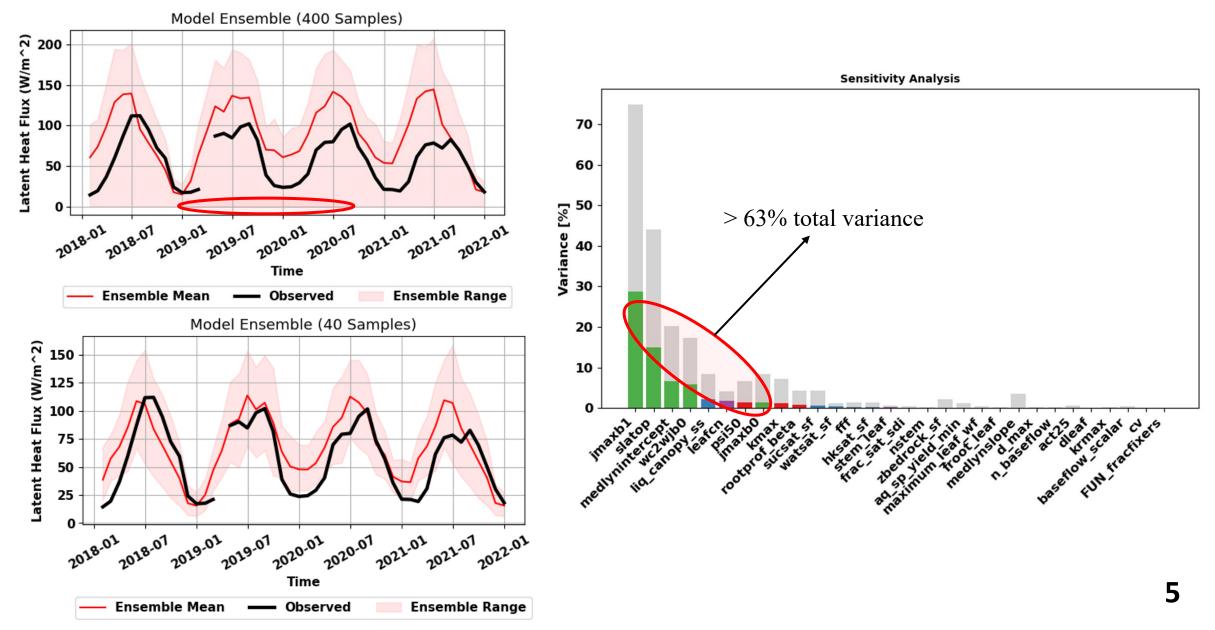


Computational challenge:

- LSMs strive for comprehensive representations of land surface processes.
- Increased complexity often leads to computational bottlenecks.



Data Availability



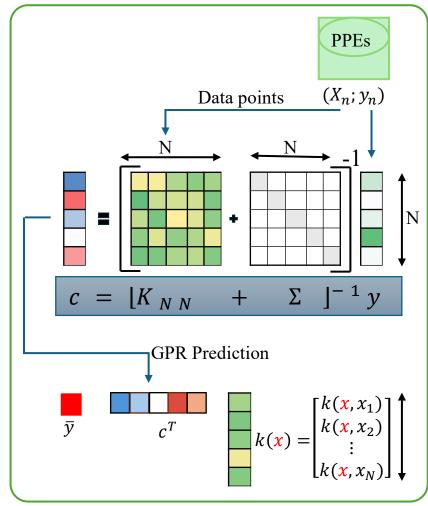
Gaussian Process Regression

- GP is defined by a mean function m(x) and a covariance function k(x, x')
- Given a set of training data X and corresponding function values y, the GP defines a prior distribution over functions *f* such that:

 $f(X) \sim GP(m(X), k(X, X'))$

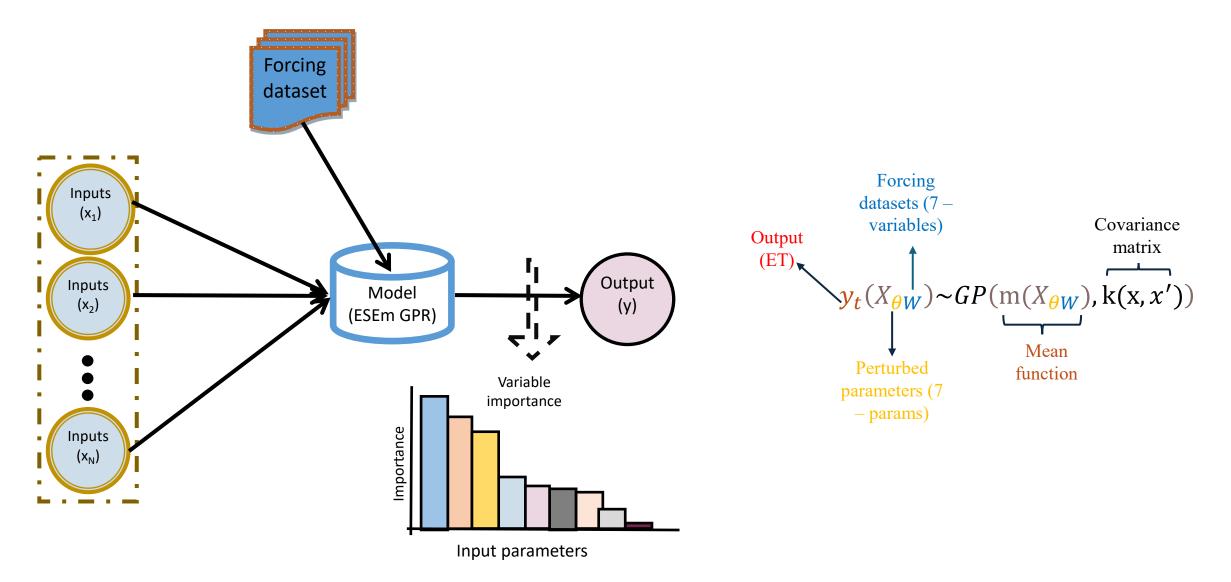
The predictive distribution at point x_{*} given training data X and y is:

 $f_*|X, y, x_* \sim GP(m_*k_*)$

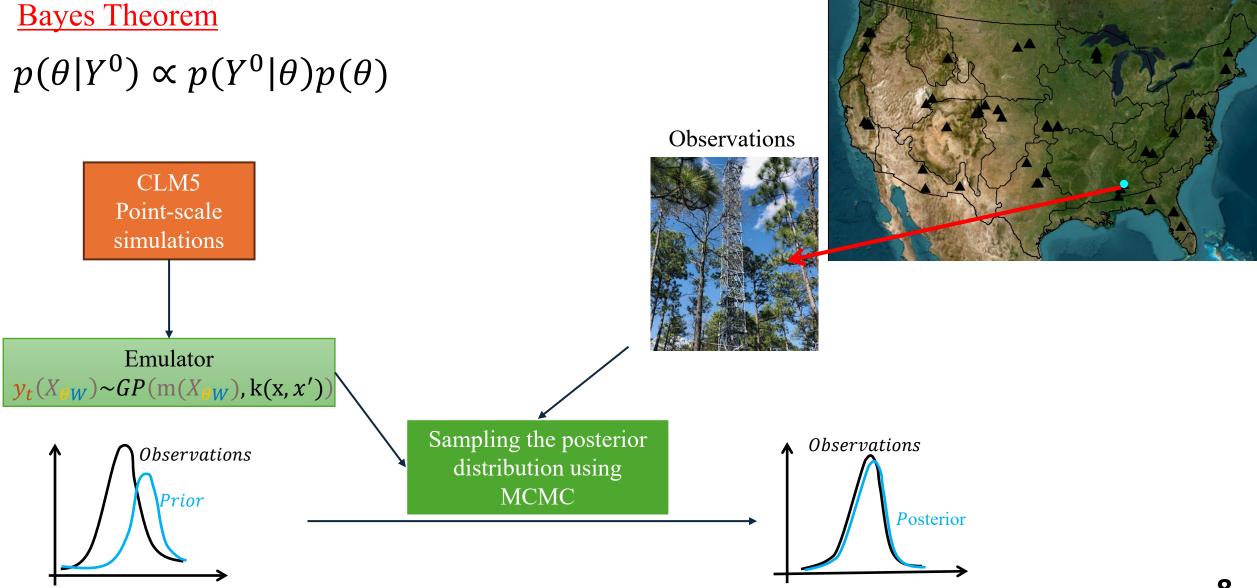


Source: Adapted from Deringer et. al., 2021

Emulating Evapotranspiration



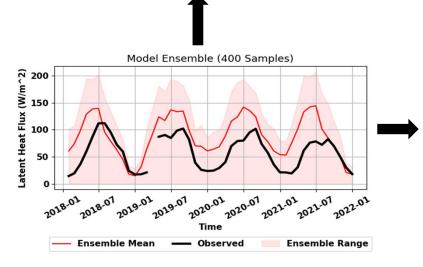
ESEm Emulator Calibration



Emulator Designs

Mean

- Mean ET from CLM5
- Observations 400 x 7
- No forcing dataset used

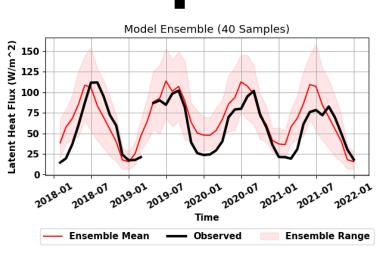


Metric

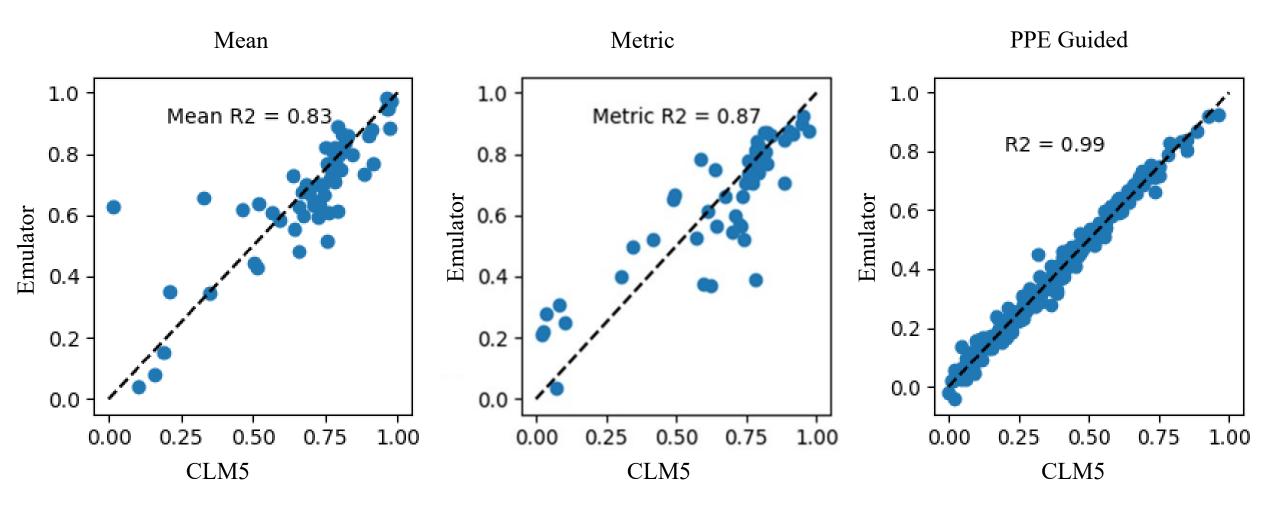
- Composite metric
- Observations 400 x 7
- No forcing dataset used

PPE Guided

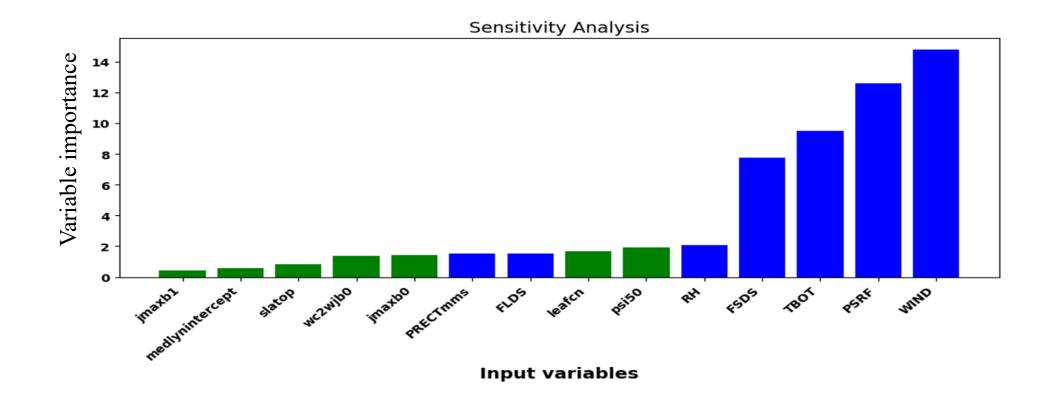
- Monthly ET from CLM5
- Observations 1920 x 14
- Forcing dataset included



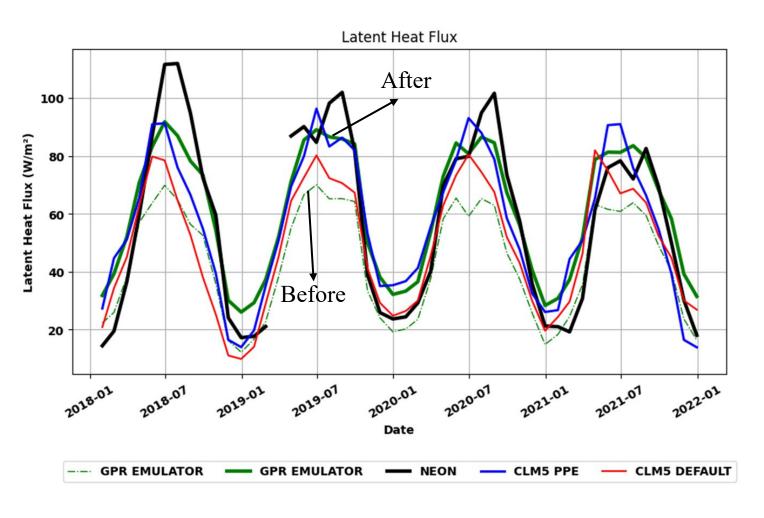
Emulator Performance



Input variable importance

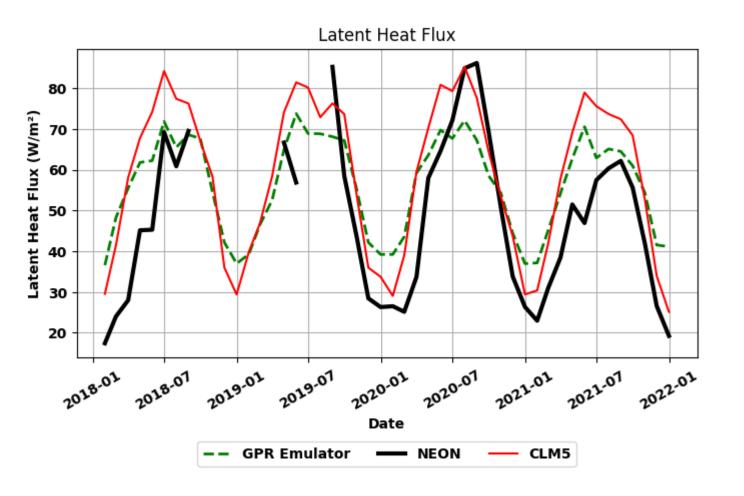


Calibration improves emulator model performance



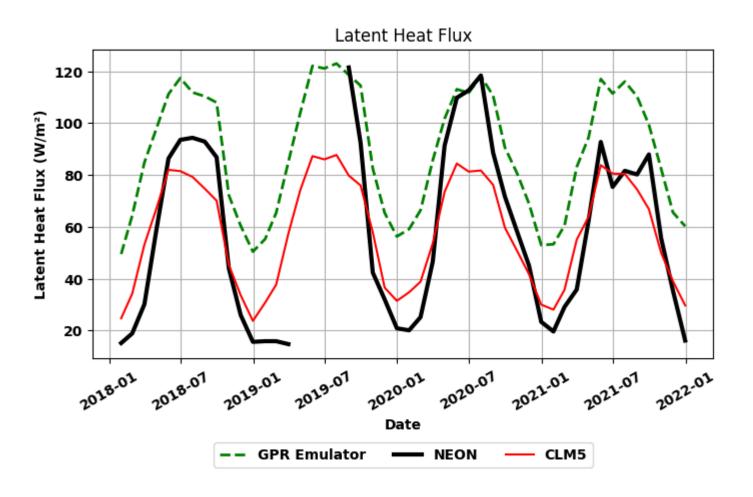
	RMSE	MBE	R^2
Default	26	-8.5	0.59
PPE	17.95	-2.28	0.74
Emulator	19	5.6	0.81

The TALL calibrated emulator was applied to other NEON sites with similar characteristics.



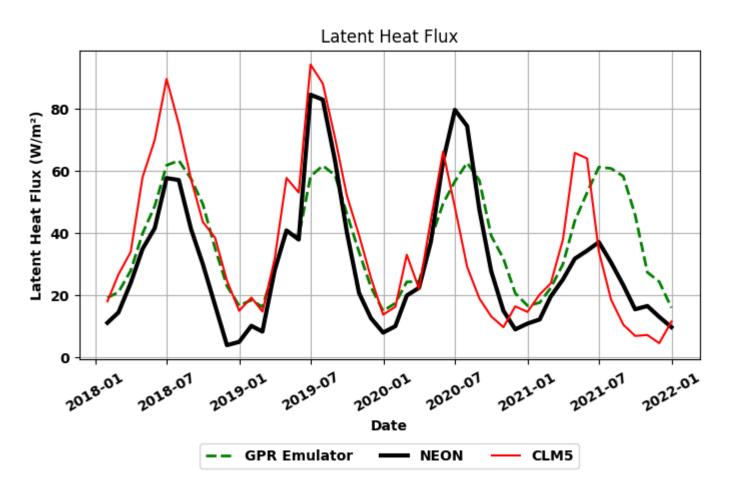
	RMSE	MBE	R^2
Default	20	12	0.58
Emulator	18	11	0.67

The TALL calibrated emulator was applied to other NEON sites with similar characteristics.



	RMSE	MBE	R^2
Default	24	-1.5	0.68
Emulator	34	28	0.80

The TALL calibrated emulator was applied to other NEON sites with similar characteristics.



	RMSE	MBE	R^2
Default	17	7.1	0.51
Emulator	20	5	0.61

Computation Cost: Comparing CLM-NEON run versus emulator

CLM-NEON (point scale simulations - ~9 minutes
CLM-NEON With initialization ~ 5.5 hrs. for 200 years

 \succ Emulator - ~ 2 seconds

Summary

- Emulator fast prediction, parameter tuning, and sensitivity analysis
- Emulating CLM5 ET highlights the adaptability of the

approach for various land surface model processes

Emulator provides more flexibility – parameter sensitivity