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Background
• Process-based Land surface models 

(LSMs) are pivotal in understanding the 
changing climate system

• Understanding Evapotranspiration (ET)
• ET is the linkage between carbon, 

water, and energy cycles. 
• Sixty-five percent of annual 

precipitation returns back to the 
atmosphere as ET
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Motivation and Overview

 Current representations of land surface processes in 
LSMs exhibit uncertainties.

 Need for more accurate climate projections and 
understanding climate-carbon feedback.

 Better representation -> More details -> Increase 
computational demands.

 Robust and computationally efficient models 
(emulators) are essential for scalability and 
practicality.
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Computational challenge:

 LSMs strive for comprehensive 
representations of land surface 
processes.

 Increased complexity often leads 
to computational bottlenecks.

Source: CLM5 Technical note (Figure 2.7.1)
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Data Availability

> 63% total variance



Gaussian Process Regression

 GP is defined by a mean function 𝑚𝑚(𝑥𝑥) and a 
covariance function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′)

 Given a set of training data X and corresponding 
function values y, the GP defines a prior distribution 
over functions 𝑓𝑓 such that:

𝑓𝑓 𝑋𝑋 ~𝐺𝐺𝐺𝐺 𝑚𝑚 𝑋𝑋 ,𝑘𝑘 𝑋𝑋,𝑋𝑋′

 The predictive distribution at point 𝑥𝑥∗ given training 
data 𝑋𝑋 and 𝑦𝑦 is:

𝑓𝑓∗|𝑋𝑋,𝑦𝑦, 𝑥𝑥∗ ~𝐺𝐺𝐺𝐺 𝑚𝑚∗𝑘𝑘∗
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𝑘𝑘(𝑥𝑥, 𝑥𝑥1)
𝑘𝑘(𝑥𝑥, 𝑥𝑥2)

⋮
𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑁𝑁)

𝑘𝑘 𝑥𝑥 =
�𝑦𝑦 𝑐𝑐𝑇𝑇

𝑐𝑐 = 𝐾𝐾 𝑁𝑁 𝑁𝑁  +  Σ  − 1 𝑦𝑦

-1N N

N

(𝑋𝑋𝑛𝑛;𝑦𝑦𝑛𝑛)Data points

PPEs

GPR Prediction

Source: Adapted from Deringer et. al., 2021



Emulating Evapotranspiration
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ESEm Emulator Calibration
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𝑝𝑝 𝜃𝜃 𝑌𝑌0 ∝ 𝑝𝑝 𝑌𝑌0 𝜃𝜃 𝑝𝑝(𝜃𝜃)
Bayes Theorem

CLM5
Point-scale 
simulations

Emulator
𝑦𝑦𝑡𝑡 𝑋𝑋𝜃𝜃𝑊𝑊 ~𝐺𝐺𝐺𝐺 m(𝑋𝑋𝜃𝜃𝑊𝑊), k(x, 𝑥𝑥′)

Sampling the posterior 
distribution using 

MCMC

Observations

𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂

𝐺𝐺osterior



Emulator Designs
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Mean

- Mean ET from CLM5

- Observations 400 x 7

- No forcing dataset used

Metric

- Composite metric

- Observations 400 x 7

- No forcing dataset used

PPE Guided

- Monthly ET from CLM5

- Observations 1920 x 14

- Forcing dataset included



Emulator Performance
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Input variable importance
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RMSE MBE R^2
Default 26 -8.5 0.59
PPE 17.95 -2.28 0.74

Emulator 19 5.6 0.81

Calibration improves emulator model performance

Before

After

TALL
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RMSE MBE R^2
Default 20 12 0.58
Emulator 18 11 0.67

The TALL calibrated emulator was applied to other NEON 
sites with similar characteristics.

OSBS
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RMSE MBE R^2
Default 24 -1.5 0.68
Emulator 34 28 0.80

The TALL calibrated emulator was applied to other NEON 
sites with similar characteristics.

JERC
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RMSE MBE R^2
Default 17 7.1 0.51
Emulator 20 5 0.61

The TALL calibrated emulator was applied to other NEON 
sites with similar characteristics.

SOAP



Computation Cost: Comparing CLM-NEON 
run versus emulator

CLM-NEON (point scale simulations - ~9 minutes

CLM-NEON With initialization ~ 5.5 hrs. for 200 years

Emulator - ~ 2 seconds
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Summary
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 Emulator - fast prediction, parameter tuning, and sensitivity 

analysis

 Emulating CLM5 ET highlights the adaptability of the 

approach for various land surface model processes

 Emulator provides more flexibility – parameter sensitivity
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