

NGEE-Tropics

Office of Science

FATES:

Functionally Assembled Terrestrial Ecosystem Simulator <u>FA</u>st <u>T</u>wo-stream <u>E</u>cosystem <u>S</u>imulator

Ryan Knox, Charlie Koven, Anthony Walker, Marcos Longo, Adrianna Foster, Jessica Needham, Alistair Rogers, Rosie Fisher, Gordon Bonan, Gautam Bisht, Erik Kluzek, Gregory Lemieux, and Jennifer Holm

Contents

- Speeding Up History IO
- The Photosynthesis Call Sequence
- Two-Stream Radiation

History Optimizations

- New! Output dimension control in the namelist!

```
fates_history_dimlevel = x,x
```

- First index is for model timestep variables, second is for daily variables
- 0 = no output
- 1 = grid-scale output only
- 2 = include output with the fourth dimension

History Optimizations

- Benefits:
 - Remove unnecessary arrays and calculations
 - Tests show levels 0,1 are 10% faster vs 2

*Test: derecho, 4x5°, 20 year simulation

The Photosynthesis Call Sequence

Photosynthesis Call SequenceMotivation

128 tasks - NE4 Grid, 20 year simulation years 10-20, full complexity, C-only

Name	Wall Total (s)
Model Time-step Loop	2.1e+05
FATES Photosynthesis	1.5e+05
Ecosystem Dynamics	1.7e+03

Evaluating the Photosynthesis Call Sequence

- Model Time-step Loop
 - Patch loop
 - Energy Balance Iteration Loop
 - Canopy x pft x leaf-layer loop
 - Photosynthesis solve, "Ci" loop

Nested Loops

Solution 1: Photosynthesis Ci Solver -Closure Criteria

Convergence Criteria	ctsm_run (time)	photosynthesis (time)
(Base) Δ < 1e–6 [PPM], i _{max} = 5	60.9165	16.4021
Δ < 1e-2 [Pa Co2], i _{max} = 50	58.7354 (3.6%)	14.5168 (11.5%)

Solution 2: Solving Energy Balance Efficiently

Canopy energy conservation gives

$$-\overrightarrow{S}_{v} + \overrightarrow{L}_{v}(T_{v}) + H_{v}(T_{v}) + \lambda E_{v}(T_{v}) = 0$$
(2.5.128)

where \overrightarrow{S}_v is the solar radiation absorbed by the vegetation (section 2.4.1), \overrightarrow{L}_v is the net longwave radiation absorbed by vegetation (section 2.4.2), and H_v and λE_v are the sensible and latent heat fluxes from vegetation, respectively. The term λ is taken to be the latent heat of vaporization λ_{vap} (Table 2.2.7).

CLM5.0 Technical Documentation

ε =0.001 Satellite Phenology

num_iter = mean number of times we call photosynthesis per solve

ε =0.001 Satellite Phenology

ε =0.001 Satellite Phenology

TVEG = Vegetation Temperature

Comparing Variably Coupled with Base - Timing

Fixed Biogeography 1-5th year of simulation $\epsilon = 0.001$

Run	Code	Mean(s)
base	ctsm_run	2966.6
	canflux	2183.6
	photosynthesis	2084.2
test	ctsm_run	2213.3
	canflux	1412.9
	photosynthesis	1285.0

"Full FATES" 5-10th year of simulation $\epsilon = 0.01$

Run	Code	Mean(s)
base	ctsm_run	6999.3
	canflux	5535.5
	photosynthesis	5333.4
test	ctsm_run	3601.7
	canflux	2076.8
	photosynthesis	1866.2

Two-Stream Radiation

Why Use Two Stream?

- Uses the same parameters as FATES with Norman radiation
- ELM, CLM and ED2 use Two-Stream
 - ED2 methods are very similar, and our team has experience with the math already
 - Use Gordon Bonan's (CLM/ELM) methods for transforming user parameter constants into model constants
- Infinite "order", i.e. its a continuum solution

Why Not Use Two Stream?

- Does not have a conceptual basis for lateral scattering across different media
- There are other methods and more sophisticated methods
 - SPARTACUS-Vegetation: Hogan, Quaife and Braghiere
 - <u>4SAIL</u>
 - Stochastic RT: Spatial variability in tropical forest leaf area density from multi-return lidar and modeling, Detto et al.

Two Stream Radiation Simulations are a better match iLAMB Observations Overall

Courtesy of Adrianna Foster

Speed: Two-Stream <u>Does Not</u> Require Discretization

Integrate analytical solution over depth, combine with photosynthesis equations

$$egin{aligned} R_{up(v)} &= A_{up} e^{-\kappa_b v} + B_1 e^{av} \lambda_1 + B_2 e^{-av} \lambda_2 \ R_{dn(v)} &= A_{dn} e^{-\kappa_b v} + B_2 e^{av} \lambda_1 + B_1 e^{-av} \lambda_2 \end{aligned}$$

Acknowledgment

This research was supported as part of the Next Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.

Office of Science

Photosynthesis Solver Ideas

- Simple Idea:
 - Review and update sensitivity analysis of Ci closure criteria

Test at BCI Panama, on single evergreen PFT, several years of simulation using inventory stand initialization and no dynamics

Photosynthesis Ci Solver -Closure Criteria

"base": $(co2_{int}-co2_{int,old})/press_{can} < 2e^{-12}$

"del_em3": $(co2_{int}-co2_{int,old})/co2_{can} < 1e^{-3}$

"del_em2": $(co2_{int}-co2_{int,old})/co2_{can} < 1e^{-2}$

FATES CO2INTRA CLLL

[Pa]

Motivational Timing Info (Energy Balance & Photosynthesis)

128 tasks - NE4 Grid, 20 year simulation years 10-20, full complexity, C-only

Name	Wall Total (s)	Slowest Node (s)	Fastest Node (s)
elm_run	2.1e+05	3658.693	237.816
canflux	1.569e+05	2958.763	22.684
edpsn	1.537e+05	2920.672	17.985
ecosystemdyn	1.69e+03	16.986	8.944
surfrad	2.6e+03	34.895	1.727

Model Time-step Loop

Energy Balance Loop

FATES Photosynthesis

Ecosystem Dynamics

Radiation

Timing Info - Take Homes

- Fraction of time that FATES photosynthesis takes of land-timestep:

1.537e+05/2.1e+05 = 73%

- Fraction of time that FATES photosynthesis takes of energy-balance iteration step:

1.537e+05/1.543e+05 = 99.6%

- There is a wide gap between fastest and slowest procs
- Average number of energy balance iterations = ~6

ε =0.001 Satellite Phenology

Delta 2(test-base)/(test+base)

QVEGT = Transpiration

