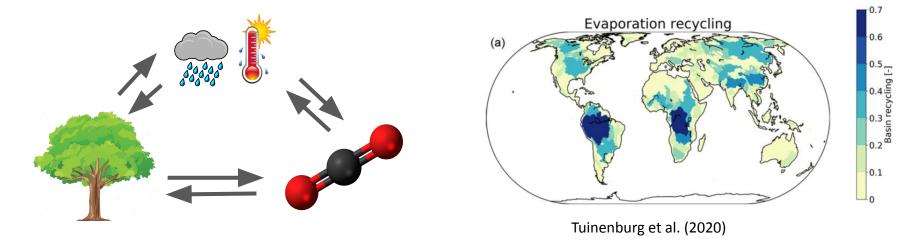


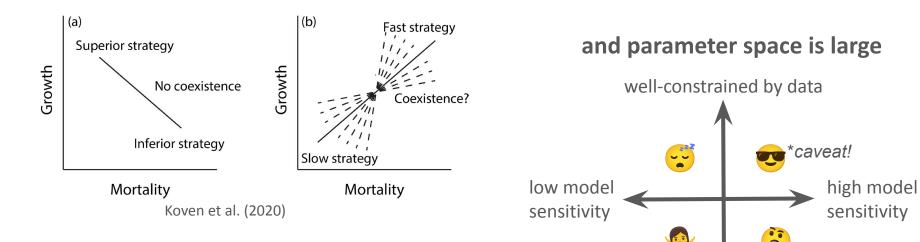
NGEE-Tropics


Towards coexistence: data-driven FATES simulations across the Amazon

Jennifer Kowalczyk, Marcos Longo, Jessica Needham, and Charlie Koven Lawrence Berkeley National Laboratory

CESM Land Model Working Group Meeting 29 Feb 2024

Motivation


How will rising CO₂, climate change, and land use affect climate-vegetation feedbacks and hydrology in the Amazon?

We need to calibrate and test FATES with offline regional-scale simulations before conducting coupled land-atmosphere simulations.

Goal: realistic, continental-scale FATES simulations with multiple PFTs

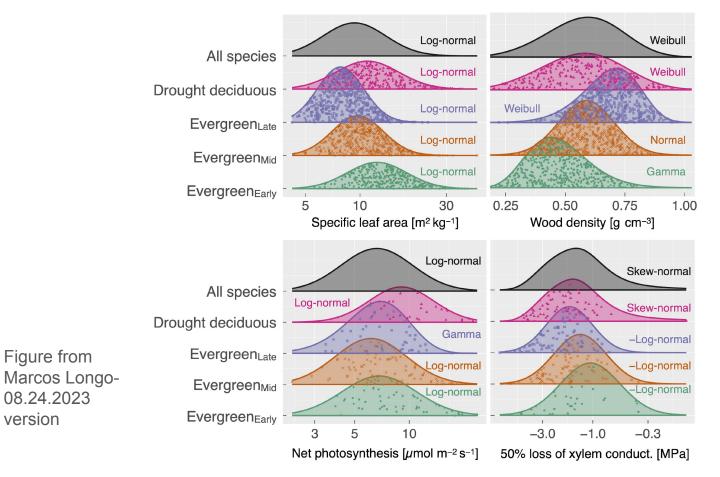
Challenge: coexistence is tricky...

- Coexistence arises from interspecific trade-offs in life history strategy (e.g. Detto et al., 2021)
- Forest structure depends on balance of growth and mortality rates (e.g. Moore et al., 2020)

unconstrained by data

Our approach: data-based plant functional types (PFTs)

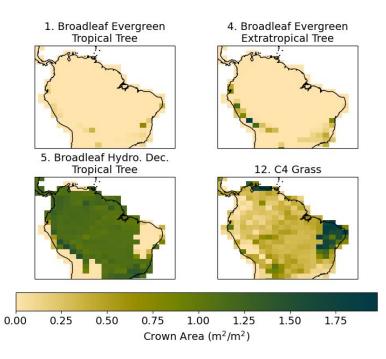
Use trait values from Marcos Longo's TRY+ cluster analysis (v 08.24.2023)


172,462 observations Current status of the data in the Neotropics 4655 species

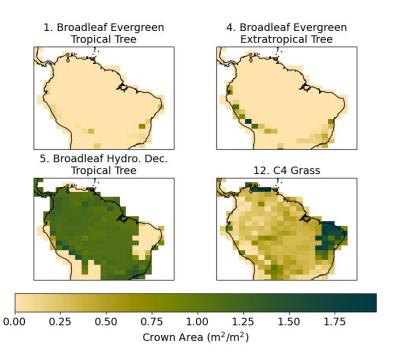
Traits data available for more than 250 species*								
Crown Area	Diameter at Breast Height	Growth Form	Specific Leaf Area	Leaf N:P Ratio	Leaf Area (Single Blade)	Leaf Force (Puncture)	Photosynth. Pathway	Leaf Chlorophyll (Area-based)
Crown Diameter	Height	Plant Woodiness	Leaf Width	Leaf Density	Leaf Nitrogen (Mass-based)	Leaf Toughness (Puncture)	Net Photosyn. Rate (Mass-based)	Net Photosyn Rate (Area-based)
Bark Thickness	Crown Depth	Bark Density	Leaf Thickness	Leaf Carbon (Mass-based)	Leaf Dry Matter Content	Leaf Nitrogen (Area-based)	Xylem $P_{_{50}}$	R _{Dmax} :V _{Cmax} Ratio
Seed Biomass	Seed Dispersal Syndrome	Wood Density	Leaf Width	Leaf Phosphorus (Mass-based)	Leaf C:P Ratio	Leaf Carbon (Area-based)	Leaf turgor loss point	Leaf Phenology
Biome	Climate	Plant Functional Type	Nitrogen Fixer	Mycorrhiza Association	Leaf C:N Ratio	Leaf Phosphorus (Area-based)	Saturated Wood Water Content	Wood Hydraulic Conductivity

slide from Marcos Longo

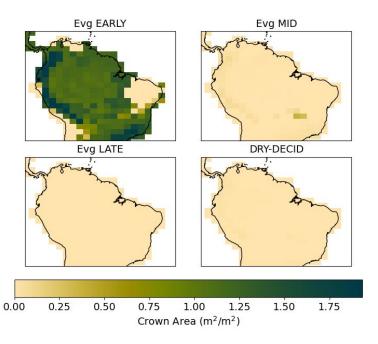
*This excludes non-canopy observations for traits with high photo-plasticity


Marcos's cluster analysis identified 4 tropical tree PFTs

version

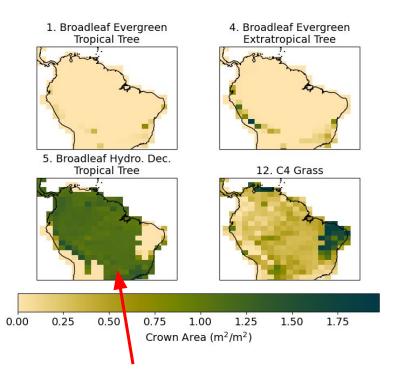

Results from initial simulations with competition

July 2023 - FATES default api25.5.0

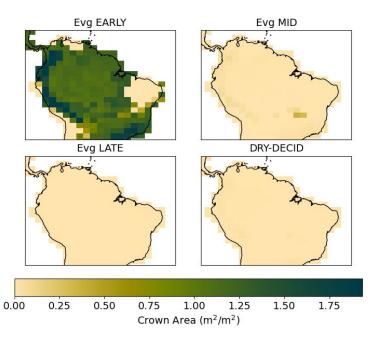


Initial results from simulations with competition

July 2023 - FATES default api25.5.0

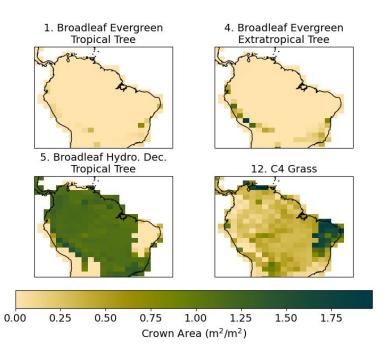


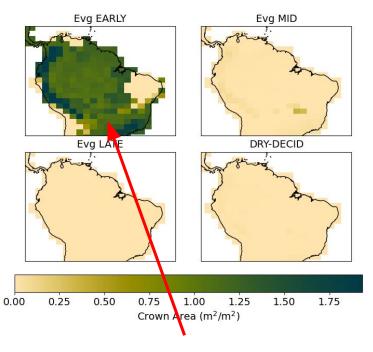
Sep 2023 - initial run with Marcos's TRY+ cluster analysis medoid species



Initial results from simulations with competition

July 2023 - FATES default api25.5.0

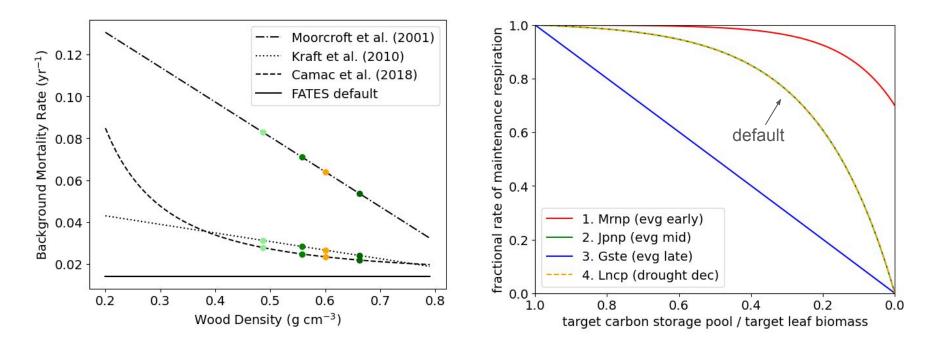

Sep 2023 - initial run with Marcos's TRY+ cluster analysis medoid species


Because of high SLA

Initial results from simulations with competition

July 2023 - FATES default api25.5.0

Sep 2023 - initial run with Marcos's TRY+ cluster analysis medoid species


Living fast but not dying young

Our process to increase PFT coexistence

In offline continental-scale simulations driven by GSWP3 climatology (Van den Hurk et al., 2016):

- 1. Adjust values of parameters related to mortality and carbon balance
- 2. Assess results in **no-competition** mode relative to our ecological expectations (Buotte et al., 2021): e.g. early successional trees should not survive in the understory, late successional should
- 3. Iterate 1-2 until ecological expectations met in no-comp mode, then turn competition back on 🤞

PFT-dependent mortality and carbon balance

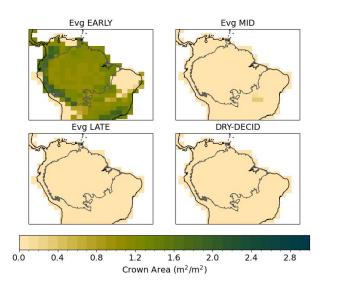
Denser wood: less vulnerable to embolism, pathogens, breakage

Conservative strategy of late successionals

Summary of parameter changes

- Use N and P stoichiometric ratios for leaves, SLA, and wood density for the medoid species from Marcos's TRY+ cluster analysis
- Background mortality: negative linear function of wood density from Kraft et al. (2010)
- Leaf lifespan increases with wood density, values from Moorcroft et al. (2001).
 Fine root lifespan = leaf lifespan
- Carbon storage cushion increases with wood density for evergreen PFTs (loosely inspired by Signori-Müller et al., 2021)
- Realistic hydraulic failure soil moisture thresholds (P. Thornton) that decrease with increasing wood density
- Edit function that reduces maintenance respiration when target carbon storage pool < target leaf biomass so that late successional PFT is very conservative while early successional PFT respires away.
- Maximum C-starve mortality rate raised for early and lowered for late.
- Allometry parameters from Jessica Needham's analysis using BAAD (Falster et al., 2015) and Tallo (Jucker et al., 2022) databases

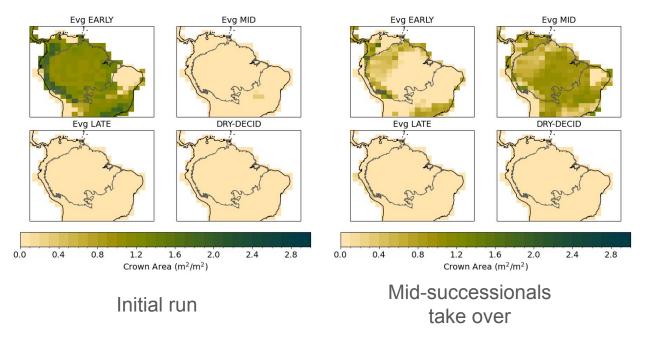
- < fates_stoich_nitr = 0.033, 0.033, 0.033, 0.04,
- > fates_stoich_nitr = 0.05055671, 0.04261242, 0.03589802, 0.04548516,
- < fates_stoich_phos = 0.0033, 0.0033, 0.0033, 0.004,
- > fates_stoich_phos = 0.00219874, 0.00162196, 0.00123329, 0.00176053,
- < fates_alloc_storage_cushion = 1.2, 1.2, 1.2, 2.4;
- > fates_alloc_storage_cushion = 1, 1.8, 2.7, 2.4;
- < fates_leaf_slatop = 0.012, 0.012, 0.012, 0.03;
- > fates_leaf_slatop = 0.014384, 0.011989, 0.009148, 0.013033 ;
- < fates_maintresp_reduction_curvature = 0.01, 0.01, 0.01, 0.01; ---> fates_maintresp_reduction_curvature = 0.001, 0.01, 0.09, 0.01
- < fates_maintresp_reduction_intercept = 1, 1, 1, 1;
- > fates_maintresp_reduction_intercept = 0.3, 1, 1, 1;


< fates_mort_bmort = 0.014, 0.014, 0.014, 0.014;

- > fates_mort_bmort = 0.031274, 0.028322, 0.024058, 0.0266 ;
- < fates_mort_hf_sm_threshold = 1e-06, 1e-06, 1e-06, 1e-06 ;
- > fates_mort_hf_sm_threshold = 0.4, 0.3, 0.2, 0.3 ;
- < fates_mort_scalar_cstarvation = 0.6, 0.6, 0.6, 0.6;
- > fates_mort_scalar_cstarvation = 0.9, 0.6, 0.1,0.6;
- < fates_turnover_fnrt = 1, 1, 1, 1;
- > fates_turnover_fnrt = 1.0, 2.0, 3.0, 1.0;
- < fates_wood_density = 0.7, 0.7, 0.7, 0.7;
- > fates_wood_density = 0.486, 0.558, 0.662, 0.6 ;
- < fates_turnover_leaf = 1.5, 1.5, 1.5, 1;
- > fates_turnover_leaf = 1.0, 2.0, 3.0, 1.0;

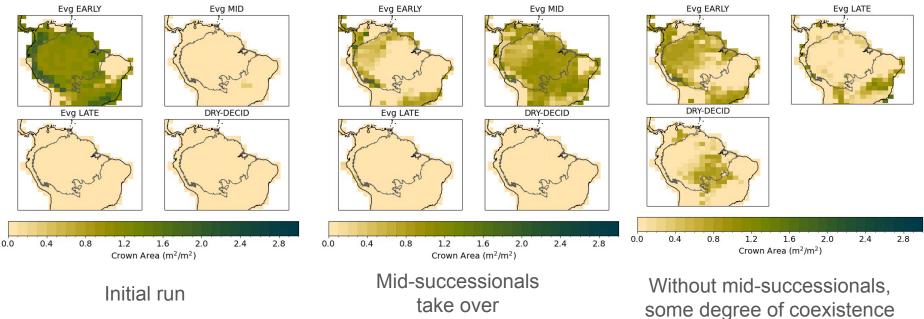
Note: fates_leaf_vcmax25top = *50, 50, 50, 58*

Turning competition back on...


Sep 2023

Initial run

Turning competition back on...

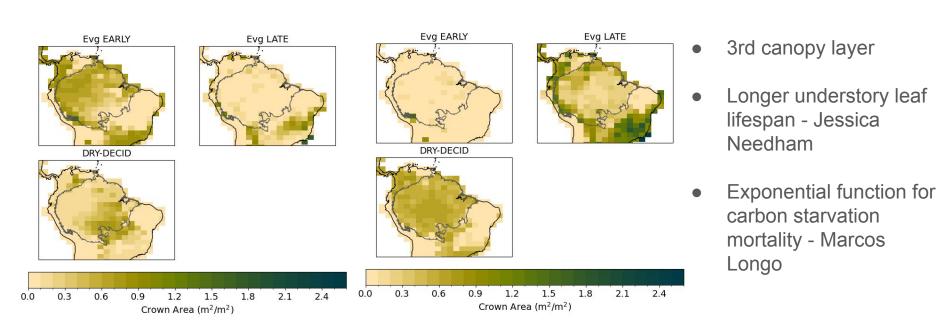

Sep 2023

Nov 2023

Turning competition back on...

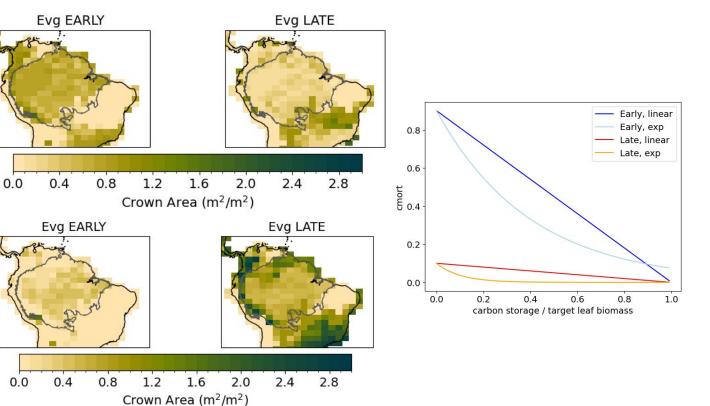
Sep 2023

Nov 2023

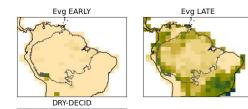

take over

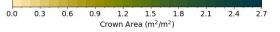
between remaining PFTs

Recent code developments help late successional PFT

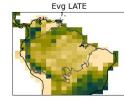

Jan 2024

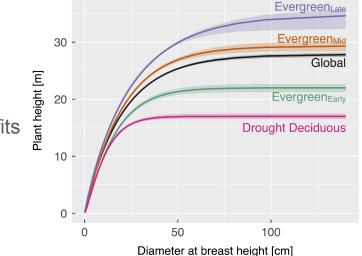
Nov 2023

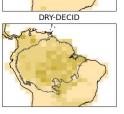

High sensitivity to variations in C-starve mortality function



Exponential cmort Early e-folding param = 0.4

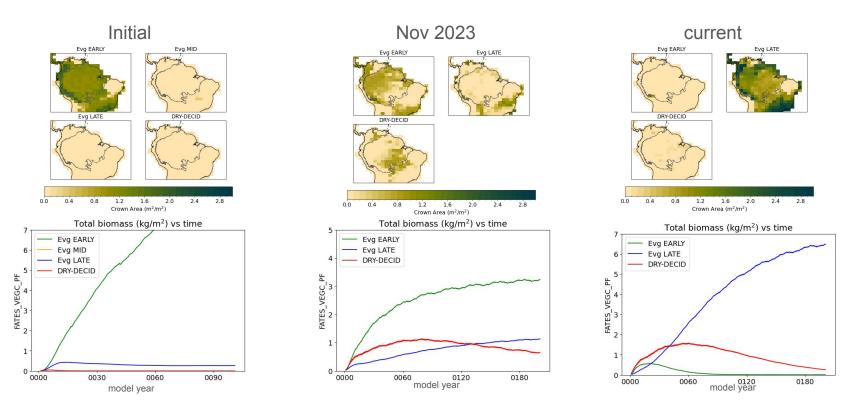

In progress: PFT-specific height allometry



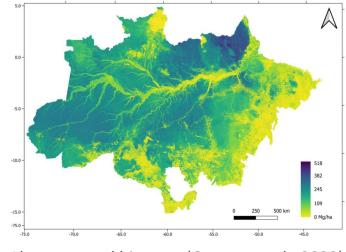


2.7

← Using Marcos's allometry fits for height (08.24.2023)



0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 Crown Area (m²/m²)


Summary

Our FATES simulations with competition show progress from early-successional dominance to late-successional dominance via parameter adjustments to reflect trade-offs in PFTs' life history strategies

Next steps

- Benchmarking
 - Census data: growth and mortality rates
 - ILAMB
 - Remote sensing data, e.g. Ometto et al. (2023)
- FATES-Hydro (in progress) and SPITFIRE
- Expand exploration of parameter space with single site PPEs Marcos Longo
- Can NN ML surrogate models predict coexistence from traits, growth and mortality rates at year N?
 - Build on Li et al. (2023)

Above ground biomass (Ometto et al., 2023)

Acknowledgement

This research was supported as part of the Next Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research.

Collaborators

Jeffrey Chambers, Ryan Knox, Charlie Koven, Greg Lemieux, Marcos Longo, Jessica Needham, Polly Thornton, Anthony Walker

U.S. DEPARTMENT OF

Office of Science