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Using a model to represent real-world hydrology

Song et al, 2015

• Model representations require choices of model structure, physics (parameterizations), and inputs:  i.e., 
forcings and parameter values. 

• These modeling and input choices are inherently uncertain … a long-standing challenge
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Applied ESM-based modeling seeks both realism AND performance

Several current water security related projects are exploring the use of CTSM as a process/physics 
advance over more common ‘applied-hydrology’ models 
• climate change studies – land modeling uncertainty is a key component (Lehner et al., 2019)
• flood, drought, and hydrologic prediction applications – supporting water management agency missions

Overarching goal
• develop land models that can represent current hydrology (performance) as well as climate 

change impacts on hydrology (fidelity) in both coupled and offline context

Immediate goal 
• develop CTSM configurations and parameter sets that perform well for hydrology – and with robust 

climate-hydrology sensitivities

First steps
• use common parameter estimation approaches from applied hydrological modeling for CTSM
• develop a large-sample small-watershed CTSM implementation for investigating parameter 

estimation and configuration strategies (US-focused, for now)

Sponsor:  US Army Corps of Engineers (USACE) – Climate Preparedness and Resilience Program 3



Identify sensitive runoff parameters based on CLM PPE
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CLM PPE performs one-at-a-time parameter perturbations 
experiments for ~200 CLM parameters. This can be used a 
good start point for selecting runoff sensitive parameters.

Among the 400 CLM PPE global sparse grids, we select 
the 30 grids within NLDAS extent. CLM SP simulations 
are used.



Identify sensitive runoff parameters based on CLM PPE

Default

Min or Max

Alterations in parameter values can influence 
runoff variability, indicating parameter sensitivity. 
Nonetheless, the choice of metrics can yield 
varying assessments of runoff changes.

Kling et al., 2012

KGE-based indicators of sensitivity 
● KGE’_min is the KGE’ difference between min and default 

parameters. 
● KGE’_max is the KGE’ difference between max and default 

parameters. 
● KGE’_deviation = 1 - ( KGE’_min + KGE’_max ) / 2

Larger KGE’_deviation indicates larger parameter sensitivity

In this study, we assess the variations in runoff by 
comparing the daily QRUNOFF outputs derived 
from default parameters and min/max parameters. 
We employ the modified Kling-Gupta Efficiency 
(KGE’) metric. 

correlation relative
bias

variability
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Identify sensitive runoff parameters based on CLM PPE

For a parameter, higher KGE’ deviation means stronger 
QRUNOFF sensitivity. 

Parameter Description

fff decay factor for fractional saturated area

medlynslope Medlyn slope of 
conductance-photosynthesis relationship

medlynintercept Medlyn intercept of 
conductance-photosynthesis relationship

baseflow_scalar Scalar multiplier for base flow rate

n_baseflow drainage power exponent

liq_canopy_storage_scalar Maximum storage of liquid water on leaf 
surface

maximum_leaf_wetted_fraction Maximum fraction of leaf that may be wet 
prior to drip occurring

d_max Dry surface layer (DSL) parameter

frac_sat_soil_dsl_init Fraction of saturated soil for moisture 
value at which DSL initiates

…

Parameters affecting same processes
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Identify sensitive runoff parameters based on CLM PPE

…

Therefore, we exclude parameters from the same or 
similar processes.

dsl(c) = d_max * max(0.001, (frac_sat_soil_dsl_init * eff_por_top - 
vwc_liq)) / max(0.001, (frac_sat_soil_dsl_init * watsat(c,1) - aird))

d_max and frac_sat_soil_dsl_init parameters control the 
calculation of dsl (dry surface layer thickness). Both 
parameters are quite sensitive but including them in the 
sensitivity analysis or parameter calibration is not ideal 
because it is hard to disentangle their interactive effects in 
both sensitivity analysis and parameter optimization with 
limited model runs.



Identify sensitive runoff parameters based on CLM PPE

Most sensitive parameters for each grid
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Identify sensitive runoff parameters based on CLM PPE

The 2nd most 
sensitive 
parameter

The 3nd most 
sensitive 
parameter

The spatial patterns 
of parameter 
sensitivity become 
less coherent as we 
look at parameters 
with lower 
sensitivity
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Balancing PPE sensitivity and hydrologic process importance
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• infiltration
• soil drainage rate in all layers (transmission of water through soil)
• soil storage capacity (porosity, wilting point, layer thickness, etc)
• aquifer or groundwater recharge
• aquifer or groundwater storage capacity
• canopy interception
• sublimation
• transpiration
• bare-soil evaporation
• snow accumulation
• snow melt
• catchment runoff routing (e.g., hillslope routing function, GIUH)
• channel routing (celerity, attenuation)

The CLM PPE information is useful, but the ultimate selection of parameters for calibration is also 
guided by a process-based strategy for influencing hydrology, leveraging prior knowledge.

Some key hydrological processes

• Process importance
o For example, n_melt_coef is insensitive for runoff according to PPE but we include it due to its 

control on snow melting and expand its parameter range. 
o We added parameters not used in PPE, such as including FMAX (maximum fractional 

saturated area) and precip_repartition_nonglc_all_rain_t (rain and snow classification).



Balancing PPE sensitivity and hydrologic process importance
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In addition to the sensitive parameters identified from CLM PPE, we also utilize prior knowledge to 
help screen parameters.
• Process importance

o For example, n_melt_coef is insensitive according to PPE but we include it due to its control 
on snow melting and expand its parameter range. 

o We added two parameters not used in PPE: including FMAX (maximum fractional saturated 
area) and precip_repartition_nonglc_all_rain_t (rain and snow classification).

• Direct hydrology relevance
o For example, more than 10 stomatal resistance and photosynthesis parameters have notable 

impact on runoff, while hydrological models would use simplified parameterizations to 
represent the impact of vegetation on direct hydrological processes like ET. So, we only use 
three of them. 

o photosynthetic rate (jmaxb0), stomatal conductance (medlynslope), and hydraulic 
conductivity (kmax)

 In the end, we select 27 parameters for further runoff sensitivity analysis. 



Establishing a large-sample testbed for hydrologic assessment with CTSM

CAMELS (Catchment Attributes and Meteorology for Large-sample Studies)

• A comprehensive set of catchment 
attributes, meteorological variables, 
streamflow observations, and model 
results for 671 US catchments 

• Widely used in hydrology research to 
develop and evaluate hydrological 
models, variability and predictability

• Has been a central dataset in the global 
rise of machine learning in hydrology 

• Has been extended in many countries by 
independent efforts

• Was originally developed in NCAR RAL 
to study streamflow predictability and 
model complexity

We created a simulation workflow for 
CTSM over these catchments. 

Addor et al., 2017

Newman et al., 2015

Daily flow Monthly flow
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Quality control of the CAMELS basin dataset 

The CAMELS basin shapefiles contained area biases caused by inaccurate streamflow gauge 
positions and imperfect boundary delineation. In some prior work, e.g., Yan et al. (2023), significant 
portions were discarded (207 out of the 671 basins) that had basin area errors greater than 2%.
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Original basins
Corrected basins

We tried corrected the CAMELS 
basin delineations by merging 
information from multiple sources:
• original CAMELS
• TDX-Hydro catchments
• MERIT-Hydro
• USGS HUC12 boundaries
• re-derived boundaries from 

TDX-Hydro 12m DEM derivatives
• HydroSHEDS

In end, we used the USGS Gages-II 
shapefiles which were unbiased.  

We now use 627 headwater-only 
(non-nested) basins.



Meteorological forcing for CONUS modeling

We generate a long-term high-resolution forcing to support watershed CTSM modeling in CONUS.
• 1950 to 2019
• Hourly, 0.1° resolution
• Precipitation and air temperature are from EM-Earth
• Other forcing variables are from ERA5-Land

Tang et al., 2022 BAMS

EM-Earth is an ensemble meteorological dataset 
which merges data from dense ground stations 
and ERA5 reanalysis. 
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KGE”: EM-Earth minus ERA5



Model set up
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Scatter plots between each pair of parameters
Histograms (on the diagonal line) of each parameter

Check whether 
parameters are correctly 
generated …

Model version: CTSM hillslope hydrology from Sean Swenson
Spin up period: 1951-01 to 2003-9
Analysis period: 2003-10 to 2009-9 (ignoring the first year for each simulation)
Parameter sampling: Latin hypercube 
Parameter set number: 200



CTSM runoff performance
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Observed streamflow is used to evaluate CLM runoff outputs. 

The KGE’ of all basins and parameter sets
Default

Spatial distribution of KGE’ based on default parameters

• For default parameters, the median KGE’ is 0.22, while the mean KGE’ is -0.29 due to the impact 
of a few basins. The highest median KGE’ of all parameter sets is 0.31. 

• The hillslope version achieves better performance than the CLM standard version using default 
parameters.



CTSM runoff performance
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Comparison between default parameters and LHS parameters

sucsat (soil matric potential) 
refers to the tension with 
which water is held in the soil 
at saturation. 

Higher sucsat_sf means the 
soil can hold more water 
before it becomes saturated. 
This could lead to reduced 
runoff and increased soil 
moisture availability for 
evapotranspiration.



Sensitivity analysis method and tool

18Liu et al., 2024; Sheikholeslami et al., 2022

VarIance-based Sensitivity analysis using COpulaS (VISCOUS) first uses a Gaussian Mixture Copula 
Model (GMCM) to approximate the joint probability distribution between the input (e.g., the perturbations 
in the model parameters) and output data (e.g., the model responses given parameter perturbations); and 
then approximates the first- and total-order Sobol’ sensitivity indices based on the fitted GMCM.

Sobol’ sensitivity indices

First-order sensitivity index: 
the direct impact of each input on 
its own

Total-order sensitivity index: 
the overall impact, including all 
interactions with other inputs

pyviscous: https://github.com/CH-Earth/pyviscous



First-order runoff sensitivity

19

Several parameters 
such as fff, FMAX, 
sucsat_sf, hksat_sf, 
and medlynslope, show 
high sensitivities in 
many basins.

Notable variability 
exists concerning the 
sensitivities.



Total-order runoff sensitivity
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Because of the large 
number of input 
parameters (27) and 
small number of 
simulations (200), 
total-order sensitivity 
values are less 
reliable. However, 
parameter ranks are 
still reliable.



Parameter rank based on runoff sensitivity
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A lower rank means the parameter is more sensitive. Ranks based on first-order sensitivity 
values and total-order sensitivity values are generally similar, despite differences for some 
basins and parameters.



Comparison between CLM PPE and runoff sensitivity analysis
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The first-order sensitivity is compared 
to CLM PPE one-at-a-time results. 
Some parameters show big differences.

Parameter PPE SA

FMAX N/A 0

interception_fraction 22 6

e_ice 14 7

n_melt_coef 23 12

liq_canopy_storage_scal
ar 3 18

maximum_leaf_wetted_fr
action 8 22

baseflow_scalar 2 23



Parameter optimization: single objective
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KGE’ Calibration was initially performed for individual 
basins using the DDS algorithm within the Ostrich 
optimization package.  

After calibration, the KGE’ is improved for most 
basins. For median KGE: 

● calibration: 0.15 to 0.46
● validation: 0.15 to 0.40 

A few basins show worse KGE’ in the validation 
periods after the calibration. Further analysis is 
needed. 

The difference between optimized and a priori 
parameters during calibration and validation periods



Parameter optimization: multi-objective
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“A solution is called nondominated, Pareto 
optimal, Pareto efficient or noninferior, if 
none of the objective functions can be 
improved in value without degrading some 
of the other objective values”

For example, in the right figure, for points 
(e.g., A and B) at the Pareto frontier, you 
cannot find other points that have better f1 
and f2 at the same time.

Source: Wikipedia

Example of a Pareto frontier
f1 and f2 are objective functions to be minimized 
(e.g., accuracy metrics for runoff or GPP)



MO-ASMO: Moving towards multi-objective optimization
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A test example of the workflow output using 
random forest as the surrogate model
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We aim to streamline hands-on model setup and calibration effort by developing the 
MO-ASMO workflow for large-sample watersheds.

Multi-Objective Adaptive Surrogate Based Modeling Optimization (MO-ASMO)



Multi-objective calibration

26

A surrogate model is used to map parameters to objective functions

S
am

pl
es

Parameters
1 2 3

…

n

Surrogate 
Model(s)

S
am

pl
es

Objective functions
1 2 3

…

m

One or more models can be built

Gaussian Processes Regression BP neural network Random forest

…



MO-ASMO: Moving towards multi-objective optimization
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MO-ASMO and Ostrich comparison over 100 basins

In MO-ASMO optimization, each parameter set is ranked separately for 
both objectives, from lowest to highest performance. We sum these ranks 
for each set. The set with the lowest total rank is chosen as optimal.

Compared to Ostrich, MO-ASMO shows 
- worse KGE’ (0.49 VS 0.55) 
- better monthly bias (2.89 VS 4.56)

This is expected because the KGE’ is not the only calibration objective in 
multi-objective optimization (versus our single-obj. optimization)

A few watersheds



Summary and Next Steps

We analyze the sensitivity of CLM parameters to runoff over the 627 CAMELS headwater 
basins in CONUS: 
• The five most sensitive parameters are fff, FMAX, sucsat_sf, hksat_sf, and medlynslope.
• The sensitivity shows notable spatial variability.
• The sensitivity is different from the CLM PPE results. The significant variation observed in some 

parameters can be partly attributed to the constraints of Latin hypercube sampling, especially when the 
default parameter does not align with the midpoint of the parameter range.

• The calibration significantly improves the runoff simulation.

Next steps:
• Select 10-15 parameters from the sensitivity analysis results
• Perform multi-objective optimization
• Investigate different CLM configurations (particularly varying soil layers and depths; PFT strategies; 

hillslope choices)
• Develop general two phase approach:  regional followed by individual 
• Investigate the hydrological robustness to forced climate changes of both CLM and SUMMA models
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Thank you!
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Guoqiang Tang:  guoqiang@ucar.edu
Andy Wood:  andywood@ucar.edu 
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Comparison between CLM PPE and runoff sensitivity analysis
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Parameter Default Lower Upper
baseflow_scalar 0.001 0.0005 0.1

The uniform sampling method 
used by LHS cannot cover the 
desired space well if the default 
parameter is not located in the 
center of the minimum-maximum 
range.

Using baseflow_scalar as an 
example, the default value is too 
close to the lower limit. Only one 
among the 200 parameters is 
smaller than the default parameter.



Comparison between first-order and total-order sensitivity
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Param Fir Tot

slopebeta 14 10

om_frac_sf 17 13

cv 10 18

zbedrock 15 21

n_baseflow 20 25

Overall, the total-order and 
first-order sensitivity agrees with 
each other.



Spatial pattern of sensitive parameters
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Most sensitive parameters in each basin

Rank of four parameters in each basin


