

Improving Forecasts of Land Surface Processes using CLM-DART (Data Assimilation Research Testbed)

Brett Raczka¹, Xueli Huo², Lewis Kunik², John C. Lin² Daniel Hagan³, Jiameng Lai⁴, Zhenqi Luo⁴, Ying Sun⁴, Moha Gharamti¹, Kevin Raeder¹, Jeffrey Anderson¹

¹NSF National Center for Atmospheric Research, ²University of Utah, ³Ghent University, ⁴Cornell University

CESM Land Model and Biogeochemistry Working Group Meeting February 29th, 2024

Approaches to implementing CLM

• Prescribed Leaf Area

CLM-DART

- Observed and unobserved land surface properties
- Bayesian (prior retained)
- Uncertainty quantification

Overview of CLM-DART assimilation steps (biomass example)

Arctic Ecosystems: Assimilating biomass has cascade effect

CLM-DART

bias

removes this

15000 135°W -2 0 2 4 LAI $(m^2 m^{-2})$ Assim-Obs 2012-2019 average 135°W -2 0 2 LAI $(m^2 m^{-2})$

Free-Obs

2012-2019 average

 Seasonal timing of leaf area (phenology) improved

 Forest height improved compared to ICEsat observations

 Most carbon, water and energy fluxes improved; (ILAMB benchmark)

Arctic Ecosystems: Enhance forecasting skill with parameter updates

• Global CLM simulation, w/ leaf area observations

- Model 'state' updates reduce initial condition error, but some structural/parametric model error remain
- The simulated LAI extended forecast (starting at yr 2006) returns to the free simulation

 Including structural/parameter updates enhances forecasting (hindcasting) skill

Sub-Saharan East Africa: Verifying forest restoration practices

Assimilated LAI (m²/m²)

- Observations increase average LAI and GPP
- PFT performance?

Next steps

- Increase ensemble size to 60
- Add observations of SMAP and SIF
- Expand to African continent

Constraining hydrologic cycle: Soil moisture observations

Methodology:

CLM 4.5 w/ satellite phenology 0.5° spatial resolution

Observations:

- ESA CCI ECV combined soil moisture (~ 5 cm depth)
- Re-scaled against GLDAS-NOAH climatology
- Frozen soil data not included

Benchmark Data

- ERA5 Land soil moisture
- Subsurface site level insitu

Hagan et al., (in prep)

Constraining hydrologic cycle: Soil moisture observations

 >90% observations are assimilated, forecast and analysis bias reduced by ~50%

CLM (free run) CLM-DART (DA)

 Influence of surface obs extends down to ~ 1 meter (100 cm shown here)

Surface soil moisture statistics improve for DA

Hagan et al., (in prep)

UNIVERSITY

Snow dependent systems: SWE observations (Western US)

• Snow and soil moisture is a strong limitation upon carbon uptake

Summer (1998-2011)

 CLM underestimates snow water equivalent (SWE), motivating snow and soil moisture DA

CLM simulated SWE

Solar Induced Fluorescence (SIF)

• SIF observations can capture both elevational and seasonal variation on carbon uptake across complex terrain (Sierra Nevada Mountains)

Land-atmosphere interactions: Seasonal Forecasting

Objective: Use CLM and observations of LAI, AGB, snow and soil moisture to initialize the land surface (LDAS-SPREADS) for seasonal atmospheric forecasts

 Assimilation of LAI observation product (GLASS) shifts LAI and latent heat flux distributions

Latent Heat (W m⁻²), (ERA5 – free run)

Latent Heat (W m⁻²), (ERA5 – assimilation)

Incorporating site level data into CLM-DART

Conclusions

- Leaf area and biomass observations improves the model state, with downstream effects on carbon, water and energy fluxes
- Water limitation can be addressed with snow and soil moisture observations, but presents methodological challenges
- Solar induced fluorescence shows promise to inform all limiting factors for carbon uptake (GPP)

Addressing Other Challenges:

- State augmentation approach can be applied to fields for ensemble DA parameter estimation
- New Quantile Conserving Filter (QCEFF) in DART addresses non-linear and non-gaussian applications for updating bounded quantities

For more information:

https://dart.ucar.edu/

Thank You !

Questions ?

We would like to acknowledge high-performance computing support from Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, sponsored by the National Science Foundation.

Coupling CLM to DART: Generating ensemble spread

. . .

To generate ensemble spread in the CLM-DART simulations, we use an ensemble met forcing product (CAM6-DART Reanalysis Ensemble, 80 members).

 Density of observation in time/space reduce CAM6 model biases

Observations: > 300,000 obs per 6 hour time step (yrs 2011-2021)

- Radiosondes: Surface balloon launches
- ACARS: aircraft
- AIRS: IR Soundings
- CDW: Cloud Drift Winds (satellites)
- GPS Refractivity: atmospheric density

(Kevin Raeder et al., 2021)

Challenge: Addressing Observation and Model biases

Remotely sensed land surface products are subject to systematic biases :

- Adaptive inflation can address systematic biases if data product is trusted
- If not, CDF matching re-scales data products to remove model-data bias and retain variability

• CDF matched soil moisture product removes systematic bias

