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Approaches to implementing CLM

CLM-SP (Satellite Phenology)
• Prescribed Leaf Area
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CLM-BGC (Biogeochemistry)
• Initial & boundary conditions
• Parameters/compsets
• No external constraints

CLM-DART 
• Observed and unobserved 

land surface properties
• Bayesian (prior retained)
• Uncertainty quantification
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Overview of CLM-DART assimilation steps (biomass example)

3

Observation Space

Model Space

Forecast (t
k
) 

(prior)
1

2

4
Apply update to 
model state (posterior)

3 Update (posterior)

CLM History, 
restart files

Calculate observed AGB

Forward operator: h
Observation estimate = h(deadstemc, livestemc, leafc, lat, lon)
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Arctic Ecosystems: Assimilating biomass has cascade effect

4X. Huo et al., 
(JGR-Biogesciences, submitted)

• CLM-DART 
      removes this
      bias

• Seasonal 
timing of

      leaf area
      (phenology)
      improved

• Free run 
overestimates

      leaf area and
      biomass

• Forest height 
improved 
compared to

      ICEsat
      observations

• Most carbon, water 
and energy fluxes 
improved;

      (ILAMB benchmark)



Arctic Ecosystems: Enhance forecasting skill with parameter updates
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• Including structural/parameter updates 
enhances forecasting (hindcasting) skill

Arctic grass

LA
I (

m
2  m

-2
)

• Global CLM simulation, w/ leaf area observations

X. Huo et al., (JGR-Biogeosciencs, submitted) 

• ABoVE (Arctic domain), CLM seasonal cycle of GPP

5oC

15oC 25oC• Model ‘state’ updates reduce initial condition 
error, but some structural/parametric model 
error remain

• The simulated LAI extended forecast (starting at 
yr 2006) returns to the free simulation

Fox et al., (2022) 

free run

‘obs’

State updates

State + 
parameter 
updates



Sub-Saharan East Africa: Verifying forest restoration practices 
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GPPLAI

LAI (m2/m2) compared to obs

2011-2020 monthly average

      Next steps
• Increase ensemble size to 

60 
• Add observations of 

SMAP and SIF
• Expand to African 

continent

• Observations 
increase average 
LAI and GPP

• PFT performance?

Shrubs/
grass

Forest



Constraining hydrologic cycle: Soil moisture observations

7Hagan et al., (in prep)

Methodology:

CLM 4.5 w/ satellite phenology
0.5o spatial resolution

Observations:

• ESA CCI ECV combined soil 
moisture (~ 5 cm depth)

• Re-scaled against GLDAS-NOAH 
climatology

• Frozen soil data not included

Benchmark Data

• ERA5 Land soil moisture
• Subsurface site level – insitu



Constraining hydrologic cycle: Soil moisture observations

8Hagan et al., (in prep)

• >90% observations are 
assimilated, forecast 
and analysis bias 
reduced by ~50%

CLM Soil Moisture Bias (m3/m3)

• Influence of surface obs extends 
down to ~ 1 meter 

      (100 cm shown here)

R
DA

 – R
free run

RMSE
DA

 – RMSE
free run

Red-> higher R for DA blue-> lower RMSE for DA 

CLM (free run)  CLM-DART (DA)

• Surface soil moisture statistics improve for DA



Snow dependent systems: SWE observations (Western US) 

• Snow and soil moisture is a strong 
limitation upon carbon uptake

Summer (1998-2011)
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Raczka et al., (2021) 

GPP (gC m-2 mth-1)

Soil moisture limitation (0-1)

high limitation

high carbon 
uptake

low limitation

low carbon 
uptake

• CLM underestimates snow water 
equivalent (SWE), motivating snow and 
soil moisture DA

CLM simulated SWE

CLM5SNODAS



Solar Induced Fluorescence (SIF)

10Kunik et al, (2024) ERL. https://doi.org/10.1088/1748-9326/ad07b4

Yrs: 2018-2020

• SIF observations can capture both elevational and seasonal variation on 
carbon uptake across complex terrain (Sierra Nevada Mountains) 

CLM Open loop CLM + LAI observations

   CLM + SIF
 observations:

- Leaf Area
- Moisture
- Nutrients

Ongoing work

Prescribed LAI



Land-atmosphere interactions: Seasonal Forecasting
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Objective: Use CLM and 
observations of LAI, 
AGB, snow and soil 
moisture to initialize 
the land surface 
(LDAS-SPREADS) for 
seasonal atmospheric 
forecasts

• Assimilation of 
LAI observation 
product (GLASS) 
shifts LAI and 
latent heat flux 
distributions

LAI (m2 m-2), (obs – free run)

LAI (m2 m-2), (obs – assimilation)

Latent Heat (W m-2), (ERA5 – free run)

Latent Heat (W m-2), (ERA5 – assimilation)

Provided by Luis Gustavo Goncalves



Incorporating site level data into CLM-DART
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ONEFLUX Processed Data

Pastorello et al., (2020)

Site level data:
carbon, water, energy 
fluxes
(FLUXNET, NEON)

Oneflux observation 
converter

Site-Level Met 
Forcing Ensemble 

Generator

/NCAR/DART

CLM site 
generation tools:

NCAR-NEON system 

Generalizing to ‘run_tower’ 
for Ameriflux & PLUMBER2 

sites

‘run_neon’ 



Conclusions
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• Leaf area and biomass observations improves the  model 
state, with downstream effects on carbon, water and 
energy fluxes

• Water limitation can be addressed with snow and soil 
moisture observations, but presents methodological 
challenges

• Solar induced fluorescence shows promise to inform all 
limiting factors for carbon uptake (GPP)

Addressing Other Challenges:

• State augmentation approach can be applied to fields for 
ensemble DA parameter estimation

• New Quantile Conserving Filter (QCEFF) in DART addresses 
non-linear and non-gaussian applications for updating 
bounded quantities



For more information:

We would like to acknowledge high-performance computing support from Cheyenne 
(doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Laboratory, 
sponsored by the National Science Foundation.

Thank You ! 

Questions ?

https://dart.ucar.edu/



Coupling CLM to DART: Generating ensemble spread
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• To generate ensemble spread in the CLM-DART simulations, we use 
an ensemble met forcing product (CAM6-DART Reanalysis 
Ensemble, 80 members).  

Challenge: 

Observations: > 300,000 obs per 
6 hour time step (yrs 2011-2021)

• Radiosondes: Surface balloon 
launches

• ACARS: aircraft

• AIRS: IR Soundings

• CDW: Cloud Drift Winds 
(satellites)

• GPS Refractivity: atmospheric 
density

• Density of observation 
in time/space reduce 
CAM6 model biases

(Kevin Raeder et al., 2021)



Challenge: Addressing Observation and Model biases

• Adaptive inflation can address systematic 
biases if data product is trusted

Years
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• If not, CDF matching re-scales data 
products to remove model-data bias and 
retain variability 

Remotely sensed land surface products are subject to systematic biases :

Solar Induced Fluorescence Data Products

Parazoo et al., (2019)

Global LAI Data Products

• CDF matched soil moisture product 
removes systematic bias

Reichle & Koster 2004 (GRL) 

Fang et al., (2019)

CLM open loop
ECV-CCI obs
ECV-CCI (CDF) obs

Original product

CDF product
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