Improving the representation of major Indian crops in CLM5 using site-scale crop dataset LMWG winter meeting 2024

K. Narender Reddy¹, S. Baidya Roy¹, Sam Rabin², Danica Lombardozzi², G. V. Varma¹, R. Biswas¹, and D. C. Naik³

¹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India ²Climate and Global Dynamics Laboratory, National Centre for Atmospheric Research, Boulder, 80307, USA ³Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India

This study is funded by the ISRO Geosphere Biosphere Program (IGBP)

Major Indian crops in LSMs

Lombardozzi et al., 202

Rice

Wheat

Crop dataset from experimental agricultural site

- Site-scale observations of Indian crops are very rarely available for public access.
- Students at agricultural institutes across India conduct experiments on Indian crops and report their results (Veeranjaneyulu, 2014).
- To fill the gap of crop data on Indian crops, we started to assemble data on wheat and rice in a formatted, machine-readable format that can be downloaded and used for model development. The data is available on the PANGEA data repository (Varma et al., 2024).

Leaf Properties	0		Above ground biomass		
Leaves/hill	Crop	Parameters	Total Dry Matter		
Leaves/IIII	ex	xtracted	Shoot Dry Matter		
Mean leaf area			Stem dry matter		
Irrigation		Yield	Crop growth rate (g/m2/day)		
Irrigation requirement (mm)		Grain Yield (q/ha)	Root parameters		
Crop water use efficiency (kg ha mm-1) water use efficiency (kg ha-1mm-1)		Harvest Index (%)	Total Root Length (cm)		
		1000-Test Weight (g)	Root volume (cm3)		
		Straw Yield (q/ha)	Root volume (onto)		
Total evapotranspira	tion (mm)				

Wheat and rice in CLM5

- The current study uses the CLM5 model with the data atmosphere model (DATM).
- The GSWP3 atmospheric data is used for the simulations.
- ✤ We ran CLM5 at two different spatial resolutions from 2000 to 2014:
 - □ site-scale simulations to calibrate the crop module, and
 - **u** regional simulations to compare the calibrated model against remote sensing data and derived surface flux data.

Deremeter	Description (units)	W	heat	Rice		
Parameter	Description (units)	CLM5_Def	CLM5_Mod1	CLM5_Def	CLM5_Mod1	
min_NH_planting_date	Minimum planting date for the Northern hemisphere (MMDD)	401	1115 (calibrated in this study)	101	701 (calibrated in this study)	
max_NH_planting_date	Maximum planting date for the Northern hemisphere (MMDD)	615	1231 (calibrated in this study)	228	815 (calibrated in this study)	
min_planting_temp	Average 5 day daily minimum temperature needed for planting (K)	272.15	283.15 (Rao et al., 2015)	283.15	294.15 (Kumar et al., 2023)	
planting_temp	Average 10-day temperature needed for planting (K)	280.15	290.15 (Asseng et al., 2016; Mukherjee et al., 2019)	294.15	300.15 (Jat et al., 2019)	
			5			
baset	Base Temperature (°C)	0	(Mukherjee et al., 2019; Mehta and Dhaliwal, 2023)	10	10 (Thakur et al., 2022)	
larafill	Croin fill parameter	0.6	0.6	0.4	0.65	
grinni		0.0	0.0	0.4	(calibrated in this study)	
hybgdd	Growing Degree Days for maturity (°C-days)	1700	1700	2100	2100	
baset_mapping	Switch to turn on/off the latitudinal variation in baset in tropics	'constant'	'constant'	'constant'	'constant'	

Wheat and rice in CLM5

Wheat and rice in CLM5

 $Tbase_{lat} = Tbase + \ latvary_{intercept} - \min\{latvary_{intercept}, latvray_{slope} * |latitude|\}$

Crop	Site Name	Latitude E [°N] t	Base temperature @		Wheat		Rice			
				Parameter name	CLM5_Def	CLM5_Mod2	CLM5_Def	CLM5_Mod2		
			[°C]		baset	0	5.4**	10	9**	
	Parbhani	19.16		8	latvary_intercept	12	6**	NA	6.8**	
Wheat	Nadia	22.95		7	latvany slope	0.4	0.40*		0.00*	
	Faizabad	25.26		7	latvaly_slope	0.4	0.19"	NA	0.26*	
Wheat	Cooch Behar	26.19		7						
	Jobner	26.51		5	* significant at p<.05 ** significant at p<.01	\\/boot		П		
	Pantnagar	29.02		5	35		CLM5-Def	35	CLM5-Def	
	Meerut	29.40		5	30 -		CLM5-Mod2 Calib Data	30 - • CLM5-Mod2 • Calib Data		
	Ludhiana	30.54		6	25	+ \ ±	R ⁻ = 0.64	25	$R^{-} = 0.68$	
	Anantapur	14.68		12	23					
	Hyderabad	17.19		11	< 20- ₽			20- 15-		
	Raipur	21.04		12	- atitue					
Rice	Jabalpur	23.90		9						
	Kuthulia	24.30		8					\mathbf{A}	
	Pantnagar	29.02		9	5 -			5-		
	Kaul	29.51		8	0	5		0 10	15 20	
					0	Base Temperature	e (^o C)	Base Tem	perature (°C)	

Results: Wheat at site-scale

Results: Rice at site-scale

Results: Wheat and Rice at site-scale

CLM5 Mo

0.3430

1.3843

3.4327

0.2917

0.5308

0.1638

121.33

0.1007

10.8272

-0.0712

0.4322**

d2

Results: Wheat and Rice at regional scale

- The unexpected peak in irrigation found in Mathur and AchuthaRao. (2019) is the result of wrong cropping patterns of wheat and rice in India. This error in simulating irrigations patterns is reduced in the modified cases.
- The amount of water added through irrigation has reduced by 25% in the case of wheat and nearly 60% in the case of rice growing regions.

Considerable improvement in yield projections of rice in the modified cases.

Results: CLM5 at regional scale - LAI

NCAR

Results: CLM5 at regional scale - GPP

Spatial

NCAR

Results: CLM5 at regional scale

r -	Parameter	Evaluation Metrics	CLM5_Def	CLM5_Mod1	CLM5_Mod2
0.95	LAI	MAB	0.1911	0.2390	0.3099
		RMSE	0.2011	0.1380	0.1246
		r	0.3530*	0.9200*	0.9307*
	GPP	MAB	0.5141	0.2435	0.2359
		RMSE	3.2511	3.1188	2.8887
		r	-0.4653*	0.7607*	0.7585*
	LH	MAB	0.2733	0.2192	0.2062
		RMSE	10.9445	5.8659	5.7292
		r	0.5259	0.9052	0.9038
	SH	MAB	0.2320	0.1785	0.1895
		RMSE	6.6510	6.3690	6.6357
		r	0.7646*	0.8930*	0.8877*

<u>Take Home</u>

- Current study is an example on how the accurate representation of regional crops improves the carbon, energy and water fluxes simulated by land surface model.
- The crop parameters should be defined at grid level instead of defining globally to allow for regional variability.

!! Special thanks to Peter Lawrence.

Thank

