

WACCM-X Simulations of the Response of Thermospheric Hydrogen to Increases in Greenhouse Gases and to Changes in Solar Activity

Susan Nossal¹, Joe McInerney³, Edwin Mierkiewicz², Liying Qian³, R. Carey Woodward⁴, H.-L. Liu³, L. Matthew Haffner², A. Ranabhat¹

(nossal@physics.wisc.edu)

¹Department of Physics, University of Wisconsin-Madison

²Embry-Riddle Aeronautical University

³High Altitude Observatory, National Center for Atmospheric Research

⁴University of Wisconsin-Oshkosh at Fond du Lac

This work was supported by NSF grant #AGS-2050072 and NASA grant #1001416553 / 1559725.

We thank Stan Solomon for collaboration and assistance with WACCM-X modeling. We also thank Olivia Hench, Brandon Myers, Lauren Ashworth, and Maria Kaminska for their collaboration as well as Fred Roesler, Ron Reynolds, Derek Gardner, Grant Petty, Alan Burns, Wenbin Wang, Jeff Percival and Kurt Jaehnig for their contributions to our investigations of multi-decadal variability.

CESM Workshop 2024

Coupling of hydrogen-containing species

³© Pekka Parviainen From http://lasp.colorado.edu/noctilucent_clouds/

⁴Source: Carruthers, Page, and Meier, Apollo 16 Lyman alpha imagery of the hydrogen geocorona, J. Geophys. Res., 81, 1664, 1976. and . pluto.space.swri.edu/.../ apollo_geocorona2.gif

WACCM-X Hydrogen Profile Calculated on Altitude

From *Solomon et al.* [2019] solar max

-5

Temperature Difference From 1972-1976 Mean (K)

-15

-10

Using Output from WACCM-X model simulations for perpetual solar conditions run for *Solomon et al.* [2018, 2019]. Blue curves from early 1970s and red from early 2000s.

- WACCM-X Upper thermospheric H increases during solar minimum & with increases in GHGs.
- WACCM-X thermospheric H rises due to increases in source species for H from CH₄ and due to CO₂ cooling.
- H response to GHGs is greater during solar min, consistent with greater CO₂ cooling during min.
- WACCM-X H response to solar cycle is larger than due to increases in CO₂ and CH₄ over 30-year time period.

Forward Modeled Hydrogen Emission Intensity using WACCMX thermosphere inputs to the Lyao_rt code

H column emission observations by the Wisconsin Halpha Mapper Fabry-Perot taken from Kitt Peak, AZ during winter and in low Galactic emission directions

Solar Maximum/Minimum Comparison shows qualitative agreement

Forward modeling of H emission using output from WACCM-X model simulations for perpetual solar conditions run for *Solomon et al.* [2018, 2019]. Solar excitation flux estimated using high resolution line center measurements from SUMER instrument on SOHO at solar min [*Warren et al.*, 1998] and scaling from TIMED-SEE irradiance (lasp.colorado.edu/lisird).

WACCM-X 2001 atmospheric profiles used in the lyao_rt forward model

- During low solar activity, WACCM-X Upper thermospheric H density increases while other background species (O, N2, O2) decrease.
- *Qian et al.* [2018] discuss how complex dynamics, including diffusion, likely contribute to hydrogen variability with solar activity.

Merged Northern Hemisphere Mid-latitude Balmer α Emission Observations

Daily Solar Radio F10.7 cm flux. Data were downloaded from the LASP Interactive Solar Irradiance Data Center (http://lasp.colorado.edu/lisird/dat a/noaa_radio_flux/

[*Nossal et al.,* JGR, 2019]

- column emission intensity for a midrange shadow altitude of ~2800 km
- half-year bins spanning winter conditions represent many spectra and, in most cases, multiple nights.
- Error bars indicate uncertainty in the *relative* intensity

b

• The WI Northern hemisphere data suggest an increase that has not been accounted for by uncertainties due to experimental factors, including calibration, tropospheric scattering, cascade fine structure excitation and Galactic emission, with the caveat that this is a limited data set.

Northern Hemisphere Mid-latitude Hydrogen Emission Observations over two solar maxima

• The data suggest a likely increase in H emission intensity between the two solar maxima, with the caveat that this is a limited data set. [*Nossal et al., JGR,* 2019]

- Forward modeling likely does not account fully for the apparent increase in observed H emission
- Next steps include using WACCM-X simulations with times more closely matching the observations.

Past Century Hydrogen Changes in WACCM-X

Over past century, neutral mass density (NMD) decreases while H increases ۲

From McInerney

et al. (2024)

- NMD has the largest % changes in the latter decades and H has largest % changes in the middle decades •
- Clearly see the influence of both CO₂ and CH₄ increases on the upper atmosphere •

Conclusions

- Upper thermospheric **H** is a byproduct of hydrogen-containing molecules at lower altitudes.
- CH₄ increases the source species for H and CO₂ cooling also contributes to an increase in H in the upper thermosphere.
- WACCM-X H density is higher at solar min. Over the three-decade WACCM-X simulation, the solar cycle has a larger impact on thermospheric H than do historical increases in GHGs.
- WACCM-X simulated **response of thermospheric H to GHGs depends on solar activity** with a greater H response to GHGs during low solar activity.
- H column emission intensities calculated using forward modeling with WACCM-X thermosphere inputs show areas of agreement and difference with ground-based Fabry-Perot observations. These calculated intensities are greater for high solar activity conditions, as is the case for observations.
- Calculated H column emission intensities are higher with increases in GHGs. WACCM-X climate simulations do not fully account for the apparent observed increase in H column emission intensity between two solar maxima periods.
- Higher WACCM-X thermospheric H densities for low solar activity and with increases in GHGs are consistent with other studies over multiple time scales that indicate higher H densities and larger magnitude variations during cooler conditions.

Ongoing and Future work

- Investigation of how middle and upper atmospheric studies may contribute to whole atmosphere pattern studies of hydrogen-containing species.
- Forward modeling comparisons with simulation time frame & viewing geometry closer to observations.
- Merging upcoming observations from the INSpIRe FPI at PBO Wisconsin [PI Mierkiewicz] with the Northern midlatitude H-alpha emission data set.
- Comparison of Northern hemisphere H-alpha observations with solar cycle variation in observations from Cerro Tololo, Chile.
- Investigation of H variability over multiple timescales using FPI observations, WACCM-X simulations and forward modeling.
- Long term ground-based observational comparisons require careful attention and documentation of calibration, observational viewing, and other observational methods.

We welcome collaborations with people studying hydrogen-containing constituents at different altitudes.

Figure 3.1: The INSpIRe Observatory at Embry-Riddle Aeronautical University. Photo credit: Maggie Gallant, October 2016.

Figure 3.2: Five instrument ports are shown here, as well as the siderostat, electronics box locations, and control computer.

Future work: Collaboration across atmospheric regions

To what extent might thermospheric and exospheric hydrogen observations and model simulations contribute to a whole atmosphere understanding of hydrogen containing species and serve as diagnostics of climate change processes and mitigation efforts?

To what extent might H and other hydrogen-containing species provide vertical footprints for climate change processes?

- One of the goals of this work is to contribute towards whole atmosphere pattern studies of climate change impacts on hydrogen-containing species across atmospheric regions.
- Hydrogen-containing constituents are likely more uniformly distributed in the middle and upper atmosphere than in the lower atmosphere.

We welcome collaborations with people studying methane and other hydrogen-containing constituents at different altitudes.

(nossal@physics.wisc.edu)

Thank you!