Evaluating the Model Representation of Asian Summer Monsoon UTLS Transport and Composition using Airborne In Situ Observations

Ren Smith (NSF NCAR/ACOM)

Email: wsmith@ucar.edu

2024 CESM Working Group Meeting

February 14, 2024

<u>Thanks to contributions from:</u> Laura Pan, Doug Kinnison, Elliot Atlas, Shawn Honomichl, Jun Zhang, Simone Tilmes, Rafael Fernandez, Alfonso Saiz-Lopez, Victoria Treadaway

<u>StratoClim airborne data from:</u> Karina Adcock, Johannes Laube, Marc von Hobe, Corinna Kloss, Michael Volk, Silvia Viciani, Francesco D'Amato, Fabrizio Ravegnani

We develop process-based model evaluation diagnostics for three mechanisms

We evaluate WACCM 110L and MUSICA 32L runs in SD configuration

Models are subset to a broad StratoClim (2017) region and time period to avoid space-time interpolation

Southern Asia

(1) Deep Convective Transport

WACCM and MUSICA represent the level of convective detrainment and transition to (slower) diabatic ascent!

However, there is a high model ozone bias from the free troposphere to the stratosphere

(2) Stratosphere Entry Concentration

WACCM and MUSICA stratospheric entry concentrations pass the eye test for selected species

To evaluate quantitatively, we use a simple error formula to compare the tropopause layer offset to the observed data range:

Stratosphere Entry Error =
$$\frac{q_{tp,m} - q_{tp,o}}{\Delta q_o} * 100\%$$

(2) Stratosphere Entry Concentration

Stratospheric Entry Mixing Ratio Errors

back to these two...

(2) Stratosphere Entry Concentration

Asian monsoon models match CONUS observations better than Asian monsoon observations

 (1) Zonally-averaged boundary conditions are not appropriate for short-lived species
(2) This process-based diagnostic approach raised the alarm

(3) Lower Stratosphere Chemical Aging

WACCM and MUSICA show compact linear tracer relationships in N₂O coordinate space, consistent with observations

The slope of a chemical relationship in the lower stratosphere is related to the ratio of the two species lifetimes. Thus, we can evaluate model chemical aging by evaluating slope:

Stratospheric Chemistry Error =
$$\frac{a_{LS,m} - a_{LS,o}}{a_{LS,o}} * 100\%$$

(3) Lower Stratosphere Chemical Aging

Summary

- The use of a tropopause-relative coordinate reveals that WACCM and MUSICA nicely represent the level of ASM deep convective outflow.
- For species with relatively short tropospheric lifetimes, the use of zonally-averaged boundary conditions may obscure important regional emissions sources.
- The use of N₂O as a chemical vertical coordinate reveals that WACCM and MUSICA successfully demonstrate compact tracer-tracer relationships. Species with lower stratospheric loss dominated by photolysis have excellent agreement in the slope of their chemical relationships.
- Importantly, these process-based diagnostics minimize the fundamental air mass size disparity between model grid points and in situ observations.

Planned future applications

- Apply framework to ACCLIP (2022) for UTLS export of air by the ASM to the surroundings
- Involve CAM-MPAS-Chem which can explicitly resolve convection
- Explicitly investigate the role of horizontal and vertical resolution with otherwise-identical simulations (the two herein were not)

Backup slides

WACCM 500m above the local tropopause

CO distributions over South Asia

Future analysis will include ACCLIP (2022)

29 research flights were conducted from Osan AFB, ROK with a comprehensive chemistry and aerosol payload on two airborne platforms during summer 2022

Thank You!!!