Evaluating the Impact of Resolving Hourly Anthropogenic Emissions on Air Pollutant Simulations in the United States Using the MUSICAv0 Model

Madankui Tao (Columbia University; MIT)

Arlene M. Fiore (MIT); Louisa K. Emmons (NCAR ACOM); Gabriele G. Pfister (NCAR ACOM); Duseong S. Jo (NCAR ACOM); Wenfu Tang (NCAR ACOM)

> Feb 13, 2024 Winter Working Group Meeting AMWG/CCWG/WAWG Joint Session

Photo credit : Unsplash

Columbia Climate School Lamont-Doherty Earth Observatory

DEPARTMENT OF EARTH, ATMOSPHERIC AND PLANETARY SCIENCES

U.S. Air Quality Trends

2023 EPA Air Trends Report (https://gispub.epa.gov/air/trendsreport/2023/#air_trends)

Geostationary Satellites with Daylight Hourly Retrievals

Key Factors Shaping Diurnal Variability of Air Pollutants

Formaldehyde and Nitrogen Dioxide Diurnal Cycles in New York: Insights into Surface Ozone Formation

Formaldehyde and Nitrogen Dioxide Diurnal Cycles in New York: Insights into Surface Ozone Formation

For June-August 2018 over NYC and Long Island Sound:

- 1. How do diurnal cycles in HCHO and NO₂ concentrations vary over urban-rural gradients?
- 2. What is the relationship between variations in near-surface concentrations and tropospheric vertical column densities?

Variations in the diurnal changes of surface NO₂ across NYC in:

- Diurnal range
- Timing of the daily maximum and minimum concentrations

For July 2018 over CONUS:

- How do simulated trace gas concentrations and their diurnal variations differ when using CAMS-GLOB-ANT v5.17 emissions compared to the 2017 U.S. NEI?
- 2. How does using hourly instead of monthly anthropogenic emissions data affect simulations of trace gas concentrations and their diurnal variations?

<u>Mu</u>lti-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0)

= CESM/CAM-chem-SE with ne0CONUSne30x8 (Pfister et al., *BAMS*, 2020, Schwantes et al., JAMES, 2022)

Base Case Simulation

Configuration Item	Description		
Resolution	ne0CONUSne30x8_ne0CONUSne30x8_mt12		
	(0.125 (~14km) degree over CONUS + 1 degree global)		
CompSet	FCnudged (F: for specified sea surface temperature and sea ice instead of		
	fully coupled)		
Chemical Mechanism	MOZART-TS1 troposphere-stratosphere chemistry		
Meteorology	Nudged to Modern-Era Retrospective analysis for Research and		
	Applications Version 2 (MERRA2) reanalysis		
Emissions	Anthropogenic: Copernicus Atmosphere Monitoring Service for global		
	anthropogenic emissions (CAMS-GLOB-ANT) v5.1		
	Biomass burning: Fire INventory from NCAR (FINN) v2.5		
	Biogenic: : Calculated online in the land component of CESM based on		
	Model of Emissions of Gases and Aerosols from Nature (MEGAN) v2.1		
Simulated time	Jan 1, 2018 – August 31, 2018		
Output dimension	ncol = 174098;		
	lev = 32; [hybrid level at midpoints (1000*(A+B))]		
	ilev = 33. [hybrid level at interfaces (1000*(A+B))]		

Sensitivity Simulations

Simulation Name	Period	Chemical Mechanism	Emission Perturbation
Base	January-August, 2018	MOZART-TS1	No
TS2base	July 1-6, 2018	MOZART-TS2	No
TS1Anthro70Perct	July 1-6, 2018	MOZART-TS1	-30% total anthropogenic emissions
TS1BioEmis70Perct	July 1-6, 2018	MOZART-TS1	-30% total biogenic emissions
TS1MonthlyNEI2017	July, 2018	MOZART-TS1	replaces monthly 2017 NEI over the CONUS but retains CAMS elsewhere
TS1HourlyNEI2017	July, 2018	MOZART-TS1	replaces hourly 2017 NEI over the CONUS but retains CAMS elsewhere

"Base" Case Evaluation

Daily Mean Surface Simulations vs. surface observations (**SLAMS**)

- NO₂: 23-40% (1-3 ppb) in all but the Mountain region -18% (-1 ppb)
- O₃: 11-28% (6-13 ppb)
- CO: -21% to -80% (10-60 ppb)

Daily Tropospheric VCD Comparisons vs. **TROPOMI** Satellite at 1:30 LT

- NO₂: -35% to -52%
- HCHO: 14-24%

The 2017 NEI data shows reduced NO_x emissions leading to lower surface NO₂ concentrations

Difference in 2018-07 Monthly **NO**_x Emissions 2017NEI vs. CAMS-GLOB-ANT5.1)

Difference in 2018-07 Monthly Mean **NO₂** concentration CONUSHourly2017NEI vs. Base (CAMS-GLOB-ANT5.1)

Integration of NEI emissions lowers high bias in surface O₃ model predictions

For July 2018 over CONUS:

- Biases in modeled concentrations
- Improved agreement in surface concentrations and HCHO columns using NEI emissions, but increased model bias in NO₂ column.
- Emissions inventory selection influences simulated daily mean concentrations more than NEI's temporal resolution.
- Notable regional variability.

Next Steps

- Analyze diurnal changes of simulated concentrations
- Group sites by location settings

Thank You!!

Contact: mt3388@columbia.edu

Complimentary Slides

Geostationary Satellites with Daylight Hourly Retrievals

Copyright © KNMI/IASB/ESA/SAO. (http://tempo.si.edu/index.html)

Observed Surface versus Column (Pandora, TROPOMI VCD_{Trop}) NO₂

