Investigating the impact of uncertainties in CH₄ emissions and halogen chemistry on CH₄ abundance and lifetime

Mohammad Amin Mirrezaei¹, Ben Gaubert², R. P. Fernandez³, A. Arellano Jr², K. McKain^{4,5}, D. Kinnison¹, I. Ortega¹, M. Saunois⁶, A. Saiz-Lopez⁷

¹University of Arizona, ²Atmospheric Chemistry Observations Modeling Laboratory (ACOM), NSF NCAR;
³ICB-CONICET, Argentina; ⁴CIRES, University of Colorado; ⁵Global Monitoring Laboratory, NOAA; ⁶LSCE and Université de Versailles Saint Quentin; 7 Institute of Physical Chemistry Blas Cabrera, CSIC

Background

Methane Emissions in Chemistry-Climate Models

- Methane concentration in atmosphere is a complex balance of sources and sinks.
- Chemistry-Climate Models commonly employ a global time-varying methane surface concentration (LBC) pre-calculated from emissions.
- LBC methane buffers atmospheric oxidation's effect on methane levels at the surface
- An interactive chemistry approach is needed to capture methane's interactions with oxidants like OH
- Few studies use methane emissions in Chemistry-Climate Models

Heimann, I., et al. "Methane emissions in a chemistry-climate model: Feedbacks and climate response." Journal of Advances in Modeling Earth Systems 12.10 (2020)

Background

Updated Short-Lived Halogens (SLH) representation

- Halogenated species affect tropospheric oxidative capacity and ozone and hydroxyl radical (OH) budgets.
- Methane oxidation:

 $\begin{array}{rcl} \mathrm{CH}_{4} + \mathrm{Cl} & \rightarrow & \mathrm{CH}_{3}\mathrm{O}_{2} + & \mathrm{HCl} \\ \mathrm{CH}_{4} + & \mathrm{OH} & \rightarrow & \mathrm{CH}_{3}\mathrm{O}_{2} + & \mathrm{H}_{2}\mathrm{O} \end{array}$

- □ VSL Halogens indirectly decrease OH by destroying O₃, the main source of the OH
- The reduction of CH_4 loss, increases the lifetime of CH_4 in the atmosphere.

Li et al., Reactive halogens increase the global methane lifetime and radiative forcing in the 21st century, nature communication, 2022

Chemistry and Methane Emissions in CESM2.2 CAM-chem

- Number of Simulations=7
- Methane emission from the Global Carbon Project 2020 (GCP2020, Saunois et al., 2020), instead of prescribed surface concentration from the CMIP6 protocol.
- Very Short Lived (VSL) halogen emissions and chemistry, applied to CESM2.2

Simulations	Chemistry	Methane	Anthro CO emission	Fire CO emission
TS1	TS1	prescribed (CMIP6)	CAMS-GLOB -ANT_v5.3	FINN2.5
TS1-GCP-2020-SURF/ GOSAT	TS1	GCP2020-S URF	CAMS-GLOB -ANT_v5.3	FINN2.5
TS1-GCP-2020-SURF/ GOSAT	TS1	GCP2020-S URF	CAMS-GLOB -ANT_v5.3	FINN2.5
TS1-VSL	TS1-VSL	prescribed (CMIP6)	CAMS-GLOB -ANT_v5.3	FINN2.5
TS1-VSL GCP-2020-SURF/GOS AT	TS1-VSL	GCP2020-S URF	CAMS-GLOB -ANT_v5.3	FINN2.5
TS1-VSL GCP-2020-SURF	TS1-VSL	GCP2020-S URF	MOPITT inversion	FINN2.5

GOSAT and Surface GCP 2020 inversion CH₄ emissions

Zonal averages of temporal change of CH₄, CO, and O₃

- Emission-driven simulations without updated halogen chemistry show significant decrease in CH_4 total column compared to simulations with prescribed CH_4
- Use of posterior CO emissions improves CH_4
- Emission-driven methane simulations with updated halogen chemistry improves CO

Relative change of CH_4 , CO, and O_3 compared to TS1

- \diamond CH₄ emission driven simulations show a significant decrease in CH₄ total column
- \diamond CH₄ emission driven simulations does not have significant impact on CO and O₃
- Simulation with revised halogen chemistry shows an increase in CH_4 and CO columns and a decrease in the O_3 tropospheric column.

Relative change of CH_4 , CO, and O_3 compared to TS1

- Using updated halogen chemistry reduces drop in CH_{4} total column in the emission driven simulations
- \diamond Using posterior CO emissions and improved halogen chemistry improve CH₄ total column
- Simulation with updated halogen chemistry shows sensitivity to CH_4 emission

NASA Atmospheric Tomography Mission (ATom) and NDACC sites

Evaluation of CH_4 against ATom

- Using updated halogen chemistry reduces bias in CH_4 compared to Atom measurements
- The same trend exist in different seasons

Evaluation of CO against ATom

Using updated halogen chemistry, and CH₄ emissions reduces bias in CO compared to ATom measurements
There is smaller variation in CO using updated halogen chemistry and emissions compared to CH₄ variations

Evaluation of O_3 against ATom

• There is a significant improvement in O_3 using updated halogen chemistry

The impact of CH_4 and CO emissions is small compared to updated halogen chemistry

Evaluation of simulations against ATom

Simulation	Mean Bias CH ₄ (ppb)	Mean Bias CO (ppb)	Mean Bias O ₃ (ppb)	Mean Correlation CH ₄	Mean Correlation CO	Mean Correlation O ₃
TS1	-1.01	-21.06	9.15	0.94	0.49	0.96
TS1-GCP-SURF	-83	-22.7	8.56	0.96	0.49	0.96
TS1-GCP-GOSA T	-93	22.25	8.56	0.94	0.51	0.96
TS1-VSL	0.19	-16.5	1.92	0.95	0.54	0.95
TS1-VSL GCPSURF	-32.85	-17.2	-2.1	0.96	0.53	0.95
TS1-VSL GCP-GOSAT	-42.7	-17.7	-2.2	0.952	0.54	0.96
TS1-SLH GCP-SURF-post- CO	-26.34	-11.09	-2.0	0.96	0.63	0.95

Ground-based FTS (NDACC): Northern hemisphere sites

- Updated halogen representation improves CH₄ and CO
- Posterior CO emissions improves CH₄ while emission driven methane simulations improves CO

Summary

- ➤ Using updated halogen chemistry in CESM 2.2 improves CH₄ and CO in the background atmosphere sampled by NASA ATom
- > Use of posterior CO emissions improves CH_4
- ➤ Halogen representation enables reasonable emission-driven methane simulations
- > Sensitivity to the choice of chemistry is larger in emission-driven methane simulations
- ➤ Emission-driven methane simulations improves CO

