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Issues with existing ice microphysics schemes

We don’t know how to represent these

We don’t know all of the physics _
processes in models

Cold - bosed Warm - based
Continental Clouds Maritime Clouds

/N

Homogeneous ice

nucleation CLOUD ¢ vater vapor ICE Supply of water vapor
b @ < de.’.\lc.s:;.ﬁ:: ice

_________ . . nucleation nucleation deposition |

— e @ ° . .\ —~ \SUb“rqa of the liquid phasg- of the ice phase ﬂu’;‘-l::choﬁ Broad cloud drcplef specira 3
° O. () [ Vapor deposmon A e yopor depositig 4 . ‘

. ; e e ~Sa Brption eterogenecus o
Riming @ she % W =wpetion Ppke s coalescence

e @ © @ O ® O g / (immersion /contoct)

. X * 3 - s_e'_:cnpu' / ¢
{eterogeneous ice .O. o £ & o8 Narrow cloud spectra LPns‘.me ice crystals ’/Frozen drops*—i ce P"'T-C')%Sicr;mg'
nucleation o O ul B @™ ‘ . I saction F +—T1 Ice Pellets P

Wet growth \\ nucleation \ /
e 8o, @ % Secondan Jow ialeiog &
2 ! y €0
o urbulenc deposit ’
it °e o, Producti aded by turbulence \ eposit SNOQOW 1ing / continved
) ° frozen drops s L
heterogeneous ¥ coolescence
—3 @ - freezing Secondary _ | _ _ _ S
et ° ‘\ ~ 0° (immersion /contoct) _*lce Particles,
° 1 LT =
‘oalescence .. Melting ey i riming e chimpilic
— S coalescence GRAUPEL !
e © . A
( °o e Shedding I 1 portial
»ndensation ® X ”‘i‘;'”ﬂ
° partial [-shedding
e —freezingl ¥ groupels L maitin Qrinbd B
... rop breaku RA[N o l. | [¢] b Bng
tiols . . -
. . ° h o7
activation — ¢% hedging Bright Band + HAIL freezing
- v
' Evaporatior WARM ] sLEET HAL SNOW RAIN  SNOW lm SLEET  WaRM
GRAUPELS  GRAINS RA |
| N
~en/inn BAMS’ 1967

Morrison et al. 2020, JAMES

2 | ML-Enhanced Unified Ice Microphysics Scheme Development &5 COLUMBIA | ENGINEERING

7 N The Fu Foundation School of Engineering and Applied Science




Representation of ice microphysics in global models

Traditional bulk approaches

Cloud ice Snow

 MG2 microphysics scheme [Gettelman and Morrison, 2015; Gettelman et al. 2015]
Observed crystals:

e 2 hydrometeor categories for ice (cloud ice & snow) 320
* |Iceis assumed to be spherical with a fixed mass-dimensional relationship (m-D) .ﬁuﬁlﬂ.l‘:*

m = aDP
* Problems:
* Realice particles have complex shapes
* Discrete, abrupt changes in m-D in converting between ice categories
* Ice-snow autoconversion parameter is unphysical
* o and B are uncertain and unphysical over large parameter ranges
* Constant m-D parameters cannot realistically capture particle growth histories
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CESM currently demonstrates significant sensitivity to ice microphysics

* MG2 microphysics scheme [Gettelman and
Morrison, 2015; Gettelman et al. 2015]

e Parametric and structural uncertainty

* Ice to snow auto-conversion threshold is
unphysical and poorly constrained by
observations (D)

e Particle mass, projected area, and terminal
fall speed not treated consistently

* Inconsistency between fall speeds, radiative
effects of ice crystals

» Significant sensitivity to ice fall speeds (~5
W/m?2) [Mitchell et al. 2008]
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= scalar error metric of the impact of cloud errors on TOA radiation
in the base state [Klein et al. 2013; Zelinka et al. 2022]

One of the 3 parameters with
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Unified ice microphysics scheme predicts particle properties

Predict particle properties instead [P3 scheme - Morrison and Milbrandt, 2015]

Conceptual model of particle growth following Heymsfield (1982):
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Figure: J. Milbrandt
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Unified ice microphysics scheme implemented in CAM-5

* MG2 modified to be a unified ice

microphysics scheme and implemented in
CAMS5 [Eidhammer et al. 2017]

* Microphysical parameters formulated in
terms of m-D and A-D relationships that vary
with particle size

* m-D, A-D relationships calculated two
different ways:

* Based on cirrus observations during
SPARTICUS field campaign [Erfani and
Mitchell, 2016]

* P33 method [Morrison and Milbrandt,
2015]

-40 -20 0 20 40 -40 -20 0 20 40

FIG. 2. Differences in zonal mean (a),(b) SWCF and (c),(d) LWCF between MG?2 and either (left) EM16 or
(right) P3. )
[Eidhammer et al. 2017]
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Our work: ML-Enhanced Unified ice microphysics scheme

SLcne
1. Improved physical basis for ice microphysical 2. Unified ice representation informed by in situ
observations from 12 past aircraft campaigns

process rates based on in situ observations
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Our work: ML-Enhanced Unified ice microphysics scheme

@LE/\D

1. |mproved physical basis for ice microphysical 2. Unified ice representation informed by in situ
process rates based on in situ observations observations from 12 past aircraft campaigns
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Diffusional growth of ice from vapor

Single crystal ice growth rate for ice growing from vapor o,
includes modifications for the deposition coefficient s £
(through a modified water vapor diffusivity term) = = Hon
1um
dmp . 47“-0(8206 - 1) H/O\H
dt - RT, D A = £ - N S OO\
Eice(Tg)D* My, LH o
D
* w
D,, = 1/2
_I_ 'lU’TrM
('r—|—A ) ;@( )

Deposition coefficient (0 < ay< 1) — how efficiently
water molecules attach to growing ice crystal

Pruppacher and Klett, 1997
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IsoCloud Campaigns (ISOtopic fractionation in CLOUDs)

AIDA Aerosol and Cloud Chamber Data sets from 48 adiabatic expansions to form ice clouds (190 - 235 K)
Karlsruhe Institute of Technology with a variety of heterogeneous and homogeneous IN

Typical approaches to evaluate models against cloud chamber
observations requires assumptions about ice growth model [Skrotzki et al.
2013; Lamb et al. 2023]. Can we use machine learning to learn unknown
physics without a priori assumptions about the ice growth model?

Train (4 experiments w/ ATD at 194 K)
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Add physics to machine learning model to improve interpretability!

- -

Physics

Lots of physics S

We want to know the structure of the single particle mass
growth rate but observations only provide constraints on
integrated ice water mass per volume in the entire cloud

Can we use a hybrid-physics machine learning model to
directly learn about parameters in the single crystal ice
growth equation?

Figure from Karniadakis et al. Nat. Rev. Phys. 2021
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Hybrid machine learning physics modeling for depositional ice growth
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K.D. Lamb, 1.Y. Harrington, J. Mikhaeil, et al. "Reducing Structural Uncertainty in Depositional Ice Growth Models Using Neural
Ordinary Differential Equations.” In prep.
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Neural ODE’s to solve ODE’s with an unknown functional form

Neural Ordinary Differential Equations
 Parametrize derivative of a hidden state using a neural network

(neural network acts a universal function approximator)

Ricky T. Q. Chen*, Yulia Rubanova¥*, Jesse Bettencourt*, David Duvenaud
University of Toronto, Vector Institute
dh( ) {rtqichen, rubanova, jessebett, duvenaud}@cs.toronto.edu

t
7 f(h(t),t,0)
ODE SO]VE(ZtO,f, Qf,t{], ...,tM)

* NODE’s perform efficient backpropagation through ODE solvers

O
o

using adjoint sensitivity method [Pontryagin et al. 1962] O
S L
Zity ™ p(zfo) ; : T + |
I |
Zty, Bty - - - Zty = ODESolve(z,, f,0¢,t0,-..,tN) ; ™ ; v
each x, NP(X|Ztia9x) . ® e *—o 0>
to tq tn INy1  ty
- | <+
Prediction Extrapolation

&5 COLUMBIA | ENGINEERING

13 | ML-Enhanced Unified Ice Microphysics Scheme Development

TN The Fu Foundation School of Engi and Applied Science




Integrate hybrid model for ice of different sizes growing simultaneously

* Implemented in PyTorch

* NN for a for each ice crystal
share the same weights

* Back-propagation through all
the ice bins to optimize NN
weights for all ice crystals
simultaneously

K.D. Lamb, 1.Y. Harrington, J. Mikhaeil, et al. "Reducing Structural Uncertainty in Depositional Ice Growth Models Using Neural

Ordinary Differential Equations.” In prep.
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NODE model optimized to cloud chamber observations

Use neural network with optimized weights to
look at functional dependence of ayon S, and T

- t dmz
IWC =Y N; T dt 4+ m;(t = 0)
=1

Log(ap) = f(5,T0)

le-12
1.4 — NODE
ISR EE 0.55
E 1.2 i 0.50
“6’ q)
X 'S 045
= S 0.40
b c
g 0.8 S 035
© =
= 'g
8 06 2 030
- a
E 0.25
0.4
0.20
0.2
0 50 100 150 200 250 300 090 095 100 105 110 115 120 125

Time (s) Si

K.D. Lamb, 1.Y. Harrington, J. Mikhaeil, et al. "Reducing Structural Uncertainty in Depositional Ice Growth Models Using Neural
Ordinary Differential Equations.” In prep.
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Our work: ML-Enhanced Unified ice microphysics scheme

GLcr
i i i i i 2. Unified ice representation informed by in situ

1. Improved physical basis for ice microphysical
process rates based on in situ observations observations from 12 past aircraft campaigns
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In situ observations from NASA & DOE aircraft campaigns
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Computer vision methods applied to CPl images

* Consistent m-D and A-D relationships
derived from observations

* Internally consistent particle fall-
speeds and optical properties

* Significantly improved observational
basis, including 12 flight campaigns

* Exploration of alternative approaches
to characterize m-D, A-D (unsupervised
learning of ice categories using data-
driven approaches)
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Outlook and Future Work

Ice microphysical processes remain a major source of uncertainty in the CESM

Both unknown physics and model representation need to be addressed

We are re-evaluating past observations of ice processes to reduce structural uncertainty in
microphysical processes using hybrid-physics machine learning approaches

We are also developing updated mass-size and area-dimension relationships using
computer vision methods applied to a data base of CPl images from past aircraft
campaigns (See Joseph Ko’s talk next!)

Next steps: update unified ice microphysics scheme with expanded observational basis for

ice processes
Evaluation : compare PPE of updated CESM+ML-Enhanced Unified Ice Scheme with CESM-
PPE [Eidhammer et al. 2024]

Collaborations and ideas are welcome!
Contact: klI3231@columbia.edu

19 | ML-Enhanced Unified Ice Microphysics Scheme Development &5 COLUMBIA | ENGINEERING

7N The Fu Foundation School of Engineering and Applied Science






	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

