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Issues with existing ice microphysics schemes
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We don’t know all of the physics We don’t know how to represent these 
processes in models

Morrison et al. 2020, JAMES



Representation of ice microphysics in global models
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Traditional bulk approaches

Cloud ice Snow

• MG2 microphysics scheme [Gettelman and Morrison, 2015; Gettelman et al. 2015]
• 2 hydrometeor categories  for ice (cloud ice & snow)
• Ice is assumed to be spherical with a fixed mass-dimensional relationship (m-D)

• Problems:
• Real ice particles have complex shapes
• Discrete, abrupt changes in m-D in converting between ice categories

• Ice-snow autoconversion parameter is unphysical
• 𝛂𝛂 and 𝛃𝛃 are uncertain and unphysical over large parameter ranges
• Constant m-D parameters cannot realistically capture particle growth histories



CESM currently demonstrates significant sensitivity to ice microphysics
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Enet = scalar error metric of the impact of cloud errors on TOA radiation 
in the base state [Klein et al. 2013; Zelinka et al. 2022]

• MG2 microphysics scheme [Gettelman and 
Morrison, 2015; Gettelman et al. 2015]

• Parametric and structural uncertainty 
• Ice to snow auto-conversion threshold is 

unphysical and poorly constrained by 
observations (DCS) 

• Particle mass, projected area, and terminal 
fall speed not treated consistently

• Inconsistency between fall speeds, radiative 
effects of ice crystals

• Significant sensitivity to ice fall speeds (~5 
W/m2) [Mitchell et al. 2008] 

[Duffy et al. 2024]

One of the 3 parameters with 
greatest influence on cloud 
feedbacks in CAM6 PPE [Duffy et al. 
2024] –> need for improved 
observational and physical basis 
rather than tuning



Unified ice microphysics scheme predicts particle properties
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Predict particle properties instead [P3 scheme - Morrison and Milbrandt, 2015] 

Figure: J. Milbrandt

• Allow mass-dimension (m-D) and area-diameter 
(A-D) relationships to evolve smoothly

• Removes unphysical separation between ice 
categories

• No abrupt changes due to auto-conversion 
processes



Unified ice microphysics scheme implemented in CAM-5
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• MG2 modified to be a unified ice 
microphysics scheme and implemented in 
CAM5 [Eidhammer et al. 2017]

• Microphysical parameters formulated in 
terms of m-D and A-D relationships that vary 
with particle size

• m-D, A-D relationships calculated two 
different ways:

• Based on cirrus observations during 
SPARTICUS field campaign [Erfani and 
Mitchell, 2016]

• P3 method [Morrison and Milbrandt, 
2015]

[Eidhammer et al. 2017]



Our work: ML-Enhanced Unified ice microphysics scheme

7 | ML-Enhanced Unified Ice Microphysics Scheme Development

1. Improved physical basis for ice microphysical 
process rates based on in situ observations

2. Unified ice representation informed by in situ 
observations from 12 past aircraft campaigns



Our work: ML-Enhanced Unified ice microphysics scheme
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1. Improved physical basis for ice microphysical 
process rates based on in situ observations

2. Unified ice representation informed by in situ 
observations from 12 past aircraft campaigns



Single crystal ice growth rate for ice growing from vapor 
includes modifications for the deposition coefficient 
(through a modified water vapor diffusivity term)

Diffusional growth of ice from vapor
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1 um

Pruppacher and Klett, 1997

Deposition coefficient (0 < 𝜶𝜶D< 1) – how efficiently 
water molecules attach to growing ice crystal



IsoCloud Campaigns (ISOtopic fractionation in CLOUDs)
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Chi-WIS

SP-APICT IsoPict 18

WELAS
REWAS

SIRI

APeT

AIDA-MBW

AIDA Aerosol and Cloud Chamber 
Karlsruhe Institute of Technology 

Data sets from 48 adiabatic expansions to form ice clouds (190 - 235 K) 
with a variety of heterogeneous and homogeneous IN

Typical approaches to evaluate models against cloud chamber 
observations requires assumptions about ice growth model [Skrotzki et al. 
2013; Lamb et al. 2023]. Can we use machine learning to learn unknown 
physics without a priori assumptions about the ice growth model?

P, Tgas

Train (4 experiments w/ ATD at 194 K)

Test (5 experiments at 194 w/ SA, SA-ATD)



Add physics to machine learning model to improve interpretability!
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Figure from Karniadakis et al. Nat. Rev. Phys. 2021

1 um

We want to know the structure of the single particle mass 
growth rate but observations only provide constraints on 
integrated ice water mass per volume in the entire cloud

Can we use a hybrid-physics machine learning model to 
directly learn about parameters in the single crystal ice 
growth equation?



Hybrid machine learning physics modeling for depositional ice growth 
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K.D. Lamb, J.Y. Harrington, J. Mikhaeil, et al. “Reducing Structural Uncertainty in Depositional Ice Growth Models Using Neural 
Ordinary Differential Equations.” In prep.

1 um

Sigmoid activation at final layer



Neural ODE’s to solve ODE’s with an unknown functional form
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• Parametrize derivative of a hidden state using a neural network 
(neural network acts a universal function approximator)

• NODE’s perform efficient backpropagation through ODE solvers 
using adjoint sensitivity method [Pontryagin et al. 1962]



Integrate hybrid model for ice of different sizes growing simultaneously
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K.D. Lamb, J.Y. Harrington, J. Mikhaeil, et al. “Reducing Structural Uncertainty in Depositional Ice Growth Models Using Neural 
Ordinary Differential Equations.” In prep.

• Implemented in PyTorch
• NN for 𝛂𝛂D for each ice crystal 

share the same weights
• Back-propagation through all 

the ice bins to optimize NN 
weights for all ice crystals 
simultaneously

… …

N2

Nn

Nn-1

N1



NODE model optimized to cloud chamber observations
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K.D. Lamb, J.Y. Harrington, J. Mikhaeil, et al. “Reducing Structural Uncertainty in Depositional Ice Growth Models Using Neural 
Ordinary Differential Equations.” In prep.

Use neural network with optimized weights to 
look at functional dependence of 𝛂𝛂D on Si and T 
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Our work: ML-Enhanced Unified ice microphysics scheme
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1. Improved physical basis for ice microphysical 
process rates based on in situ observations

2. Unified ice representation informed by in situ 
observations from 12 past aircraft campaigns



In situ observations from NASA & DOE aircraft campaigns
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COCPIT - Classification 
of Cloud Particle 
Imagery and 
Thermodynamics



Computer vision methods applied to CPI images
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• Consistent m-D and A-D relationships 
derived from observations

• Internally consistent particle fall-
speeds and optical properties

• Significantly improved observational 
basis, including 12 flight campaigns

• Exploration of alternative approaches 
to characterize m-D, A-D (unsupervised 
learning of ice categories using data-
driven approaches)
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• Ice microphysical processes remain a major source of uncertainty in the CESM
• Both unknown physics and model representation need to be addressed
• We are re-evaluating past observations of ice processes to reduce structural uncertainty in 

microphysical processes using hybrid-physics machine learning approaches
• We are also developing updated mass-size and area-dimension relationships using 

computer vision methods applied to a data base of CPI images from past aircraft 
campaigns (See Joseph Ko’s talk next!)

• Next steps: update unified ice microphysics scheme with expanded observational basis for 
ice processes

• Evaluation : compare PPE of updated CESM+ML-Enhanced Unified Ice Scheme with CESM-
PPE [Eidhammer et al. 2024] 

• Collaborations and ideas are welcome!

Outlook and Future Work

Contact: kl3231@columbia.edu
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