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Emulating the complex physics-based GW parameterization in WACCM 
serves as a testbed for exploring solutions to these challenges

Climatology of zonal-mean GWD

Convective GWs (CGWs)

Frontal GWs (FGWs)

Orographic GWs (OGWs)
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Fully connected NNs are used as emulators
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The heterogeneous and intermittent nature of GW sources leads 
to a significantly imbalanced dataset
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GW drags concentrate primarily at critical levels, resulting in non-smooth 
profiles with numerous levels exhibiting zero GW drag

A sample profile of CGWs
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Normalizing the data while preserving the original wind and GWD profile 
structure enhances the emulator's performance

Norm1: 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑢𝑢 − �𝑢𝑢
𝑠𝑠𝑠𝑠𝑠𝑠(𝑢𝑢)

 

Norm2: 𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑢𝑢
max(𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢 )
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Resampling the data (ReSAM): limiting the number of sample pairs with zero 
GWD to match the number of samples with non-zero GWD
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Uncertainty quantification (UQ) provides a credible confidence level for each 
prediction, serving as a reliable indicator of its accuracy 

• Bayesian Neural Network (BNN)

• Dropout Neural Network (DNN)

• Variational Auto-Encoder (VAE) 



8

All three UQ methods produce reasonably informative uncertainty 
estimates, as their curves closely align with the 1-to-1 line

CGWs FGWs



Transfer learning improves out-of-distribution generalization of 
the NNs under 4×CO2 forcing
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The data imbalance issue is particularly pronounced for the OGWs

clustering of OGWs for all columns over land 
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Take-home points

Pahlavan@nwra.com 

• WACCM’s orographic, convective, and frontal GWP are emulated using NNs.

• Data imbalance is addressed via resampling and weighted loss.

• Uncertainty quantification is addressed via Bayesian, dropout, and variational methods.

• Out-of-distribution generalization under 4×CO2 forcing is enabled via transfer learning.

• These findings apply to the data-driven parameterizations of other climate processes.

arXiv:2311.17078

mailto:Pahlavan@nwra.com
https://arxiv.org/abs/2311.17078


o Well-vetted physics at convection-permitting resolutions

A library of high-resolution simulations with regional WRF model 

model top: 80 km

Convection 

GWs

o Sampling circulation/convection conditions (QBO phase, current vs. warming)
o Constrained by reanalysis on the boundaries (no model drift)
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OOD generalization 

(extrapolation to a test data distri- bution different from that of 
the training set) is a major challenge for applications involving 
non-stationarity, like a changing climate 
A general and powerful method for im- proving the OOD 
generalization capability of NNs is transfer learning (TL), which 
involves re-training a few or all of the layers of a NN using a 
small amount of data from the new system 
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UQ

three common UQ methods (Bayesian, dropout, and variational 
NNs) by analyzing the relationships between uncertainty and 
accuracy during inference testing. We will also consider 
scenarios involving OOD generalization errors resulting from 
global warming. 

Bayesian neural network (BNN), dropout neural network 
(DNN), and variational auto-encoder (VAE) 
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Take-home points
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• WACCM’s orographic, convective, and frontal GWP are emulated using NNs.

• Data imbalance is addressed via resampling and weighted loss.

• Uncertainty quantification is addressed via Bayesian, dropout, and variational methods.

• Out-of-distribution generalization of the NNs under 4×CO2 forcing is enabled via transfer learning.

• These findings apply to the data-driven parameterizations of other climate processes.
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The effect of normalization method
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