

sun earth connections

WACCM-X Recent Development

Hanli Liu¹, Peter Lauritzen², Francis Vitt^{1,3}, Kevin Pham¹, Nick Pedatella¹, Joe McInerney¹, Soudeh Kamali¹, Bill Skamarock⁴, and Joe Klemp⁴
1: NCAR/HAO; 2: NCAR/CGD; 3: NCAR/ACOM; 4: NCAR/MMM

CESM Working Group Meeting, 13 February 2024, Boulder, CO

CESM/WACCM-X, SIMA-Geospace, and Whole Geospace Model

Multiscale Atmosphere-Geospace Environment (MAGE) Model

Major CESM WACCM/WACCM-X Components

Model Framework Chemistry I	Neutral Atm. Physics	Ionosphere Physics	Resolution
Atmosphere component of NCAR Community Earth System Model (CESM)MA/Ion Chemistry (~100 species)Lor RRExtension of the NCAR Community Atmosphere Model (CAM)Fully-interactive with dynamics.IR of ModelFinite Volume Dynamical Core (modified to consider species dependent Cp, R, m)(CAModel (CASpecies Dependent Spectral Element (SE) Dynamical CorePar MajMPAS-A Regridding schemeModel (CASpecies Model	eng wave/short wave/EUV RTMG cooling (LTE/non-LTE) odal Aerosol ARMA) onvection, precip., and oud param. (CLUBB) arameterized GW ajor/minor species diffusion UBC) orizontal/Vertical molecular scosity and thermal onductivity (+UBC)	Parameterized electric field at high latitude. IGRF geomagnetic field. Auroral processes, ion drag and Joule heating Ion/electron energy equations Ambipolar diffusion Ion/electron transport Ionospheric dynamo Coupling with plasmasphere, magnetosphere	Horizontal: 1.9° x 2.5° 0.9° x 1.25° 0.47° x 0.625° (lat x lon configurable as needed) NE16, 30, 60, 120 120 km Vertical: 70 levels (0-140km) 130, 185, 273 levels (0-~600km)

Species Dependent Spectral Element Dynamical Core

- Based on the standard SE dynamical core in CAM/WACCM
- In the thermosphere dependence of Cp, R and mean molecular weight on major species (O, O2, H and N2) needs to be taken into consideration.
- Generalized formulation and dycore independent implementation.
- Major species transport by CSLAM.
- Pressure gradient formulation (non-Exner) used for momentum equation.
- Temperature used as state variable in energy equation.

Horizontal Molecular Viscosity/Diffusion

- In the ionosphere F-region height (~200 km) the molecular damping time becomes comparable or shorter than the buoyancy frequency for waves with horizontal wavelength ~< 200 km (~4000 km at model top).
- When these waves are resolved it is important to consider horizontal molecular viscosity/diffusion.
- Now taken into consideration in SE dynamical core.
- Explicit scheme and sub-cycling used for the horizontal viscosity/diffusion.

Numerical Damping

 Second order diffusion (Laplacian) applied to T, v and pressure level thickness and 4th order hyper-diffusion applied to T, divergence, vorticity, and pressure level thickness.

Regridding Scheme

- ESMF-based regridding scheme maps fields between physics mesh and regular/irregular grid.
- Independent of dycore grid.

WACCM-X SE Model Resolutions

NE16/L130	NE16/L189*	NE30/L130	NE60/L130	NE120/L273
1 model year (FX2000, F10.7=120, Kp=0.33)	Test runs * Additional troposphere/stratosphere levels.	Short test runs; WACCM-X/GAMERA storm time for comparison	Short test runs; Specified-dynamics (SD) runs	1 model year Nature run (FX2000, F10.7=120, Kp=0.33); WACCM-X/GAMERA storm time; Hunga-Tonga simulation

Zonal Mean Zonal Wind: June

U [m/s], June Average NE120, Ion average

URAP zonal wind Jun 92

120

110

100 91

81

72 62

53

43

34

24

15

5

-3 -13

-22

-32

-41

-51

-60

-70 -80

Swinbank & Ortland, 2003

A Few Nice Surprises from Nature Run (Tomorrow)

- Gravity wave distribution from the tropopause to the upper thermosphere in general agreement with observations.
- Stronger tides and tidal wave breaking.
- Better SAO.
- Improved thermosphere composition (O/N2)
- Improved MLT NO, especially in polar night.
- Resolved TIDs with characteristics comparable with observations.
- Mesoscale thermosphere and ionospheric structures.

Special Needs/Issues with High-Resolution WACCM-X

- Large memory footprint
 - Cheyenne: large-memory nodes or under-subscription for regular nodes.
 - Derecho: node under-subscription no longer needed after code optimization.
- More recent tag on derecho has stability issue when run at high-resolution
- Older tag is now running stably on derecho.
- Data serving and issue with Globus

WACCM using MPAS-A

- MPAS-A: Non-hydrostatic dynamical core solved on centroidal Voronoi mesh.
- Finite-volume, C-grid staggering.
- Hybrid terrain-following height vertical coordinate.
- ~120 km horizontal resolution with 70 levels.
- 1 model year simulation with specified chemistry configuration.
- Mean wind and temperature compare well with FV and SE runs with similar resolution.
- Will be further developed for SIMA S2S² project.

