EarthWorks Update

EarthWorks is a five-year project, in which CSU and 3 NCAR laboratories are working together as partners.

Nevertheless, EarthWorks is not a project of CESM.

Earthworks is supported by NSF/CISE. The CSU/NCAR split is 60/40.

- The goal is to develop a global convection-permitting coupled model based on the CESM.

The EarthWorks Vision

- Using CESM as a base, create a coupled model with the same 3.75-km geodesic grid for atmosphere, ocean, and land surface.
 - Partially explicit deep convection and gravity waves,
 - Resolved stratosphere,
 - Regional refinement option.
- Use the model to study both weather and climate, on time scales ranging from days to years.
 Use the model to understand deficiencies of lower-resolution versions of CESM (and other
- Use the model to understand deficiencies of models).
- Use the model to create training data sets for machine learning.
- Develop improved parameterizations that work well with both 3.75-km and 120-km grids.
- Use lower-resolution versions of the same model to study century-scale climate change.

EarthWorks consists of:

- The MPAS non-hydrostatic dynamical core, with a resolved stratosphere and CAM-ish physics
- The MPAS ocean model, developed at Los Alamos
- The MPAS sea ice model, based on CICE
- The Community Land Model (CLM)
- The Community Mediator for Earth Prediction Systems (CMEPS)
- The Community Physics Framework, when ready

Science Goals

- The deep convection and gravity-wave drag parameterizations will be eliminated.
- The stratosphere will be resolved.
- scales, on time scales of days to years.

Computational Goals

- resolution.
- The ocean and atmosphere will run on GPUs for ultra-high resolution simulations.
- Half a simulated year per day in atmosphere-only simulations with a resolved stratosphere, and
- One simulated year per day in coupled simulations with fewer stratospheric layers. This would be on a DOE "leadership class" machine.

Goals

• The model will resolve mesoscale storms. ocean eddies, mountains, and large lakes and rivers.

• The model will be used to study the interactions of mesoscale weather systems with larger spatial

• The model will run on CPUs for low resolution experiments and for short tests with ultra-high

• Our 2025 performance goals for a version of EarthWorks with 3.75 km global grid spacing are:

Issues already found and fixed

- Initialization (abnormally long times, high memory use)
 - Traced to an issue in ESMF, resulted in a patch release.
 - Impact: 5.7x speedup, 2x reduction in memory use during initialization.
- 100x slowdown in history I/O bandwidth
 - Traced to the ROMIO MPI-IO implementation in PnetCDF, resulted in a problem report and workaround.
 - Impact: Expected history I/O performance restored
- Run after restart errors
 - Traced to an issue with the PIO2 (parallel I/O) infrastructure in CESM, resulted in a patch release.
 - Impact: Correct model restarts restored
- Differing results between the CPU & GPU implementations of AER's • Radiative Transfer Model (RRTMGP)
 - Traced to an incorrect argument being passed in the GPU version.
 - Fed back to the developers.
 - Impact: GPU-based results now match CPU version

A multi-institutional collaboration: CSU, NCAR, TACC, ESMF Core Team, AER

urror_mod = modifier_ob... mirror object to mirror rror_mod.mirror_object eration == "MIRROR_X": irror_mod.use_x = True irror_mod.use_y = False irror_mod.use_z = False operation == "MIRROR_Y" irror_mod.use_x = False irror_mod.use_y = True rror_mod.use_z = False operation == "MIRROR_Z" rror_mod.use_x = False rror_mod.use_y = False rror_mod.use_z = True election at the end -add ob.select= 1 r ob.select=1 ext.scene.objects.action Selected" + *str*(modifie py.context.selected_ob ata.objects[one.name].se int("please select exaction OPERATOR CLASSES -----active

EarthWorks software roadmap

Version (Target D

Version 1.0 (Relea

Version 2.0 (Relea

Version 2.1 (Plan

Version 3.0 (Plan

Version 4.0 (Plan

¹ RRTMGP (radiative transfer), CLUBB (low clouds), and PUMAS (μ physics) + indicates a new feature/capability added cumulatively.

Delivery Date)	Deliverables
ased 3/2023)	CPU-only 120,60,30 km @ 32 levels Compsets: FHS94,FKESSLER,Aquaplanet, F2000Climo, Fully Coupled Compilers: Intel classic/GNU
ased 11/2023)	 + 15 km resolution @ 58 levels + nvhpc compiler support + GPU PUMAS microphysics¹
ned 2/2024)	 + bug fixes + 30 km resolution (GPU) + GPU-offload MPAS dycore
ned: 11/2024)	 + 7.5 km resolution, resolved stratosphere + Scalable diag tools v1 release + GPU offload for all target physics params¹
nned: 6/2025)	 + 3.75 km resolution + Scalable diag tools release + MPAS-Ocean GPU offload

What's in EarthWorks SW Version 2.1

Version 2.1 does include the following improvements:

- Release of GPU-offload version MPAS-7.x dynamical core (30/60 km).
- Code base is integrated with CAM6.3 tag 145 level (up from tag 124 in 2.0).
 - Temporary patch version of aerosol_optics_cam.F90 for nvhpc compiler.
- MPAS Sea-Ice build issue under ifx (Intel OneApi fortran compiler) resolved.

Version 2.1 does not include the following elements:

- Fix to atmosphere run after restart issue under the nvhpc compiler.
- GPU-offload versions of:
 - CLUBB (PR issued)
 - RRTMGP (PR under SW code review)

How do I get EarthWorks Version 2.1?

- GitHub access via git clone at:
 - https://github.com/EarthWorksOrg/EarthWorks.git
- .tar.gz or .zip files available here:
- Questions/issues? Contact: Donald.Dazlich@colostate.edu

https://github.com/EarthWorksOrg/EarthWorks/releases/tag/release-ew2.1

EarthWorks Software V2.1 Release: CPUs

Compiler	Nvhpc			Gnu				Intel (OneAPI)				
	120km	60km	30km	15km	120km	60km	30km	15km	120km	60km	30km	15km
FHS94 (32L)												
FKESSLER (32L)												
QPC6 (32L)												
F2000Climo (32L)												
F2000Climo (58L)												
Fully Coupled(32L)												

Not currently supported

EarthWorks GPU Offload Testing Roadmap

Compiler		Ope	nAcc		OpenMP Offload				
Offload Configuration	120km	60km	30km	15km	120km	60km	30km	15km	
Dynamical Core (MPAS V7.x)									
cloud microphysics (PUMAS)									
Radiative Transfer (RRTMGP)									
Low Cloud Parameterization (CLUBB)									

* The need for a 2.5 release is TBD.

PUMAS/MG3 Microphysics on GPUs

- Microphysics code has been fully ported onto GPUs and has been integrated into the CAM development code
 - Includes both OpenACC version and OpenMP offload versions
- Comparison done between one EPYC 7763(AMD Milan) and one A100 in the integrated within CAM (timing results contain data transfer time)
- Maximum speedup over CPUs is 5.8x (for OpenACC) and 3.4x (for OpenMP)

Results courtesy of Jian Sun, NCAR

Goldilocks zone:

- Blue: too few columns per GPU, not enough parallel work to keep the GPU busy.
- **Red:** too many columns, not enough memory on the GPU to hold the working data.
- Green: Juuust right balance of parallel work and memory.

• Example, the balance point is about:

- ~16 GPU's @ 30 km
- ~64 GPU's @ 15 km
- ~256 GPUs @ 7.5 km
- ~1024 GPU's @ 3.75 km

Results courtesy of Jian Sun, NCAR

Machine Learning the Warm Rain Process Used for PUMAS microphysics in Earthworks

Replace traditional GCM bulk rain formation with a bin model formulation for stochastic collection (left). This is much too expensive for climate use, so we

Both Bin and ML-Bin reduce rain frequency (frequent 'drizzle' problem in **Control**) in sub-tropics to match observations

Gettelman et al. 2021, JAMES

Machine Learning the Warm Rain Process Used for PUMAS microphysics in Earthworks

Replace traditional GCM bulk rain formation with a bin model formulation for stochastic collection (left). This is much too expensive for climate use, so we

Both Bin and ML-Bin reduce rain frequency (frequent 'drizzle' problem in **Control**) in sub-tropics to match observations

Gettelman et al. 2021, JAMES

Thinking about EarthWorks phase 2

CSU and NCAR are currently dis (start date 2025).

CSU and NCAR are currently discussing a possible follow-on proposal

Backup Slides

Our approach to porting to **GPUs: Directive-based offload**

- We currently offload to GPUs using OpenACC directives.
- We see the best performance with OpenACC
- With a large Fortran code base, porting to a new language is not currently an option.
- Our plan includes a "cautious" pivot to OpenMP offload directives.
- We have had reasonable success with Intel's OpenACC to OpenMP offload conversion tool.

- Arror_mod = modifier_ob. mirror object to mirror irror_mod.mirror_object peration == "MIRROR_X": irror_mod.use_x = True irror_mod.use_y = False irror_mod.use_z = False operation == "MIRROR Y" irror_mod.use_x = False rror_mod.use_y = True Irror_mod.use_z = False operation == "MIRROR_Z"; rror_mod.use_x = False rror_mod.use_y = False rror mod.use z = True election at the end -add Ob.select= 1 r ob.select=1 text.scene.objects.action Selected" + str(modifie rror ob.select = 0 bpy.context.selected_ob ata.objects[one.name].se int("please select exactle OPERATOR CLASSES ----
 - ext.a

- CLUBB has been fully ported onto GPUs using OpenACC.
- There is also a version that uses OpenMP offload.

*Comparisons were run one EPYC 7763(AMD Milan) and one A100, comparisons done in standalone CLUBB

Results courtesy of Gunther Huebler, University of Wisconsin, Milwaukee

• We are currently working on incorporating CLUBB-GPU into CAM

MPAS dycore performance

- **Experiment**: MPAS-7 (5.9M cell mesh; 56 levels; FP32) ran dry baroclinic test case for 10 simulated days
- **Equipment**: Selene supercomputer; nodes = AMD Dual socket EPYC 7742 "Rome" CPUs with 8x NVIDIA A100 GPUs; 10 HDR links/node.
- **Resources**: Benchmark of 128-core ROME CPU node vs A100 GPU
- Takeaways:
- Early scaling looks impressive and 3.5x faster than CPU node.
- Slowdown of MPAS-7 compute (m) was recently isolated to not declaring new variables GPU resident.

Results courtesy of Raghu Raj Kumar of NVIDIA

RRTMGP

- Utilizing code from Robert Pincus, et al
 - <u>https://github.com/earth-system-radiation/rte-rrtmgp</u>
- version
 - It took some time to debug
 - Verified that answers match between CPU and GPU
- GPUs (without data transfers).

• We have incorporated RRTMGP into the latest CAM development

• Preliminary results in standalone tests show about a 10x speedup on