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Outline

Discuss 
Stratospheric 
Photochemical 
Processes (brief)

LUT Table Approach (TUV4.2, Kinnison, 2007)

TUV-x (TUV5.5, Madronich) 

Comparisons 
between LUT and 
TUV-x

Compare important photolytic species. Use 4-Stream 
radiative transfer from only TUV-x
Compare photolytic species with radiative transfer from 
LUT and TUV-x

Heating Processes 
in WACCM

Photolysis Heating 

Chemical Potential Heating

Run 1-year 
Specified 
Dynamics

Initial attempt using  TUV-x inline in a SD-WACCM6  
(MERRA2) simulation.

Conclusions / 
Next Step

Optimization
Test inclusion of aerosols in Radiative Transfer
Develop Cloud Overlap Approach  



CESM WACCM  LUT Approach 

Inline (33 Bins) LUT (67Bins)

Photolysis: e.g., O2 + hv -> O (3P) + O(1D) 

d[O2]/dt = -JO2 [O2]

JO2 (p) = Σ Fexo (λ) x Nflux(p, λ) x σ (λ) x φ (λ) 

200 nm 750 nm

Fexo: Lean (λ) dependent extraterrestrial flux. 
Modified by the Earth-Sun distance (esfact).

Nflux (normalized flux) is based on TUV 
(Madronich),  4-stream radiative transfer.

LUT: Nflux (p, λ) is function of (pressure, col. O3, 
SZA, Albedo)

LUT: σ (λ) x φ (λ) is function of ( T, p )
 

RRTMG SW Heating rates

121 nm

Inline Calculation:
• JO2 Lyman Alpha
• JO2 SRB
• JNO SRB

• σ x φ  for all other J’s

• Nflux (p, λ) is funct. of (O3, O2)

Heating and 
Photolysis rates

Cloud correction factor is applied to total J (Madronich).

<= EUV (LUT)
λ



CESM WACCM  TUV-x Approach 

Inline Inline

Photolysis: e.g., O2 + hv -> O (3P) + O(1D) 

d[O2]/dt = -JO2 [O2]

JO2 (p) = Σ Fexo (λ) x Nflux(p, λ) x σ (λ) x φ (λ) 

200 nm 750 nm
RRTMG SW Heating rates

121 nm

Heating and 
Photolysis rates

Aerosols and Clouds included in 4-stream radiative transfer.

<= EUV (LUT)
λ

Merger RRTMG and Photolysis HR at 60km



Examining Photolysis Reactions for the TSMLT Mechanism

Example Temperature dependence for CFC-11 

First Step was to examine all the 
photochemical reactions used in the WACCM 
TSMLT1 chemical mechanism.

 This mechanism has 241 species, 447 chemical (gas 
& heterogeneous), 150 photochemical, equaling 
597 total reactions.

 We have examined most of the 150 photochemical 
reaction.  This is a very time consuming processes, 
i.e.,  examining cross sections and quantum yields, 
& Temperature dependence properties.

 We have compared the profiles (single timestep) 
for the TUV-x photochemical reactions to the LUT.

 The first step was to use a common radiative 
transfer (from TUV-x) for both TUV-x and LUT 
photolysis rates (next slide).



Stratosphere UTLS

Troposphere,
UTLS

Troposphere,
UTLS

Very Good Agreement 
of Cross Sections and 
Quantum Yields 
between the LUT and 
TUV-x.

Comparison of Select Photolysis  Rates between LUT and TUV-x
(Radiative Transfer is from TUV-x for both approaches)

Noon-time output

Different 
choice for 
XSQY.

??



Comparison of JO2 and JO3 between LUT and TUV-x
(Radiative Transfer is from TUV-x for both approaches)

Noon-time output

Very Good Agreement 
of Cross Sections and 
Quantum Yields 
between the LUT and 
TUV-x.

Important photolysis 
reactions for both 
chemistry and middle 
atmosphere heating 
rates. 

??



24-hr average output

Still Good Agreement 
of Cross Sections and 
Quantum Yields 
between the LUT and 
TUV-x.

We are continuing to 
track down any 
differences between 
LUT and TUV-x!

Comparison of JO2 and JO3 between LUT and TUV-x
(Radiative Transfer used from both approaches)

??

??

??



Solar Heating Rate Approach in WACCM MLT

Mlynczak and Solomon, JGR, 1993.

Solar Energy

Atomic and 
Molecular Internal 
Energy
[e.g., O(1D). O2(1Σ)]

Translational Energy
[Energy of Photon – BDE]

Chemical Potential 
Energy
[Exothermic Reactions]

Radiative Loss,
Air Glow

Heating from absorption of a 
photon is not generally 
realized locally in the MLT 
region.

Derive the heating rates from 
the photolysis code above 
60km.

O2 + hv => products
O3 + hv => products



Solar Heating Rate Approach in WACCM Example

Mlynczak and Solomon, JGR, 1993.

O3

O(1D)

O2 (1∆)

+ hν (<310 nm)

O2 (1Σ)

+

O(3P)N2 (v)

N2
CO2 (001)

CO2

O2

HeatHeat Heat

Heat
Heat

Heat

O2

4.3 µm

1.27 µm

762 nm
865 nm

O3 + hv => O(1D) + O2(1∆)

Heat

Radiative process

Collisional process

Heat Thermal process

The radiative and thermal 
processes are dependent on 
the photolysis package in the 
MLT region.



WACCM Solar Heating Rates: Merged with CAM6 RRTMG

Chem. Potential 
Heating (QCP)
QRS (RRTMG)
QRS_Total

QRS_Total = QRS +QCP+QTHERMAL+QRS_EUV+QRS_CO2NIR+QRS_AUR

TropicsTropics

QRS (RRTMG) is merged with other upper atmospheric heating rates starting at 60km.

Initial comparison shows good agreement between LUT and TUV-x 



First (preliminary) attempt at 1-year simulation (2011) ** SD-WACCM
La

tit
ud

e

Month Month

LUT  [Agrees well with Obs] TUV-x

Seasonal behavior generally captured in TCO by the TUV-x simulations. 
A good first step! 

O3 depletion too  Low

O3 depletion too late

Too HighTropics too Low

Total Column Ozone



La
tit

ud
e

Month Month

LUT TUV-x

Excellent Agreement!!!

Surface Ozone

First (preliminary sim) attempt at 1-year simulation (2011) ** SD-WACCM



Summary

 The TUV-x  cross sections and quantum yield representation (for 
the TSMLT chemical mechanism) is currently being evaluated and 
generally in good agreement with the LUT version.
 More J’s are needed to be added to TUV-x for Hg and VSLS 

Halogen chemistry.

 The TUV-x  photolysis heating rates have been derived and are 
consistent with the LUT approach. 

 The TUV-x photolysis package has been successfully implemented 
in CESM2 WACCM6-SD.  This includes the option of putting 
aerosols and clouds in the radiative transfer.
 There are differences in the TCO between the TUV-x and the 

LUT version that needs to investigated.

 Next Step (over the next couple months)
 Examine the inclusion of aerosols and clouds in the TUX-x 

radiative transfer for interactive simulations (FCASE, BCASE).
 Optimize inline code to be more computationally efficient 

with (4-stream radiative transfer).



Extra Slide



Why did we need to “Refactor” the TUV-x Code (Matt Dawson)

 TUV-x must be configurable: To have a single codebase that recreates the functionality of the various 
existing instances of TUV, many hard-coded choices needed to become configuration options. The single 
TUV-x codebase can now recreate the results of the stand-alone TUV 5.4 as well as the version of TUV used 
to generate the CAM-Chem lookup table data. Configurability also leads to more code reuse (less need for 
copy/paste/modify approach to feature addition)

 TUV-x must be testable and tested: During the refactoring unit tests were added to ensure the smallest 
components of the TUV-x code continue to work correctly now and as development continues into the 
future. Regression testing against older versions of TUV ensures that TUV-x remains able to recreate 
previous results. Tests are automated and run on every PR into the TUV-x repo and include testing with and 
without MPI and memory checking with Valgrind. Code coverage by automated testing is at about 80%.

 Object-oriented design: The choice to move to an object-oriented design was to improve encapsulation 
(keeping data and functionality together; separation of concerns) and prepare for eventual porting to a 
modern language with better compiler support.

 Computational efficiency: For the computational cost, we have a SIParCS project in the summer to begin 
porting the TUV-x solver to GPUs. This will involve optimizations (e.g., multi-column solving) applicable to 
CPU-based solving as well.
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