Inclusion of Inline photolysis module (TUV-x) in CESM WACCM / MUSICA

Douglas Kinnison Matt Dawson, Francis Vitt Stacy Walters, Kyle Shore

Atmospheric Chemistry Observations and Modeling Laboratory NSF NCAR

> WACCM Working Group Meeting Boulder CO February 13, 2024

> > CCM

Whole Atmosphere Community Climate Model

Outline

LUT Table Approach (TUV4.2, Kinnison, 2007)
TUV-x (TUV5.5, Madronich)
Compare important photolytic species. Use 4-Stream radiative transfer from only TUV-x
Compare photolytic species with radiative transfer from LUT and TUV-x
Photolysis Heating
Chemical Potential Heating
Initial attempt using TUV-x inline in a SD-WACCM6 (MERRA2) simulation.
Optimization Test inclusion of aerosols in Radiative Transfer Develop Cloud Overlap Approach

CESM WACCM LUT Approach

Photolysis: e.g., $O_2 + hv \rightarrow O(^{3}P) + O(^{1}D)$ $d[O_2]/dt = -J_{O2}[O_2]$

 $J_{O2}(p) = \sum_{\lambda} F_{exo}(\lambda) \times N_{flux}(p, \lambda) \times \sigma(\lambda) \times \phi(\lambda)$

<= EUV (LUT)

Inline (33 Bin	s) LU	LUT (67Bins)	
121 nm	200 nm	750 nm	
Inline Calculation:	F_{exo} : Lean (λ) depe	ndent extraterrestrial flux.	
• JO ₂ Lyman Alpha	Modified by th	e Earth-Sun distance (esfact).	
• JO ₂ SRB	N _{flux} (normalized flu (Madronich),	is based on TUV4-stream radiative transfer.	
• JNO SRB	LUT: N _{flux} (p, λ) is f	unction of (pressure, col. O_3 ,	
• $\sigma x \phi$ for all other J's	SZA, Albedo)	SZA, Albedo)	
• N_{flux} (p, λ) is funct. of	f (O ₃ , O ₂) LUT: σ (λ) x ϕ (λ) is	s function of (T, p)	
Heating and	RRTMG	SW Heating rates	
Photolysis rates			

Cloud correction factor is applied to total J (Madronich).

CESM WACCM TUV-x Approach

Photolysis: e.g.,
$$O_2 + hv \rightarrow O(^{3}P) + O(^{1}D)$$

 $d[O_2]/dt = -J_{O_2}[O_2]$

$$J_{O2}(p) = \sum_{\lambda} F_{exo}(\lambda) \times N_{flux}(p, \lambda) \times \sigma(\lambda) \times \phi(\lambda)$$

<= EUV (LUT)

Aerosols and Clouds included in 4-stream radiative transfer.

Examining Photolysis Reactions for the TSMLT Mechanism

First Step was to examine all the photochemical reactions used in the WACCM TSMLT1 chemical mechanism.

- This mechanism has 241 species, 447 chemical (gas & heterogeneous), 150 photochemical, equaling 597 total reactions.
- We have examined most of the 150 photochemical reaction. This is a very time consuming processes, i.e., examining cross sections and quantum yields, & Temperature dependence properties.
- We have compared the profiles (single timestep) for the TUV-x photochemical reactions to the LUT.
- The first step was to use a common radiative transfer (from TUV-x) for both TUV-x and LUT photolysis rates (next slide).

Example Temperature dependence for CFC-11

McGillen et al.¹¹ used the polynomial expansion:

 $\log_{10} \sigma(\lambda, T) = \Sigma A_i (\lambda - 200)^i + (T - 273) \times \Sigma B_i (\lambda - 200)^i$

to fit their data. The fit is valid for the temperature range 216-296 K and wavelength range 190-230 nm and reproduces their experimental data to within 2%. The reported A_i and B_i parameters are given below. The fit is in good agreement with the Chou et al.¹ data set, to within 5%, in reasonable agreement with the Mérienne et al.¹² data set, differences of 8% or less, but shows systematic differences with the Simon et al. data set, with 15% differences for the data at 230 K. The McGillen et al. parameterization is recommended.

i	A _i	Bi
0	-18.1863	0.0002656
1	-0.0528	4.228×10^{-5}
2	-0.001126	1.4027×10^{-6}
3	-3.0552×10^{-5}	6.44645×10^{-7}
4	2.24126×10^{-6}	-3.8038×10^{-8}
5	-3.2064×10^{-8}	$5.99 imes 10^{-10}$

Photolysis Quantum Yield and Product Studies: Clark and Husain² reported a quantum yield for $Cl^{*}(^{2}P_{1/2})$ atom formation in the broadband photolysis of CFCl₃ of 0.79 ± 0.27.

Comparison of Select Photolysis Rates between LUT and TUV-x (Radiative Transfer is from TUV-x for both approaches)

Comparison of JO₂ and JO₃ between LUT and TUV-x (Radiative Transfer is from TUV-x for both approaches)

Comparison of JO₂ and JO₃ between LUT and TUV-x (Radiative Transfer used from both approaches)

Solar Heating Rate Approach in WACCM MLT

NACCM

Mlynczak and Solomon, JGR, 1993.

Solar Heating Rate Approach in WACCM Example

 $O_3 + hv => O(^1D) + O_2(^1\Delta)$

Mlynczak and Solomon, JGR, 1993.

WACCM Solar Heating Rates: Merged with CAM6 RRTMG

QRS_Total = QRS +QCP+QTHERMAL+QRS_EUV+QRS_CO2NIR+QRS_AUR

QRS (RRTMG) is merged with other upper atmospheric heating rates starting at 60km.

Initial comparison shows good agreement between LUT and TUV-x

First (preliminary) attempt at 1-year simulation (2011) ** SD-WACCM

Seasonal behavior generally captured in TCO by the TUV-x simulations. A good first step!

NCAR

Whole Atmosphere Community Climate Model

First (preliminary sim) attempt at 1-year simulation (2011) ** SD-WACCM

Excellent Agreement!!!

NCAR

Whole Atmosphere Community Climate Model

Summary

- The TUV-x cross sections and quantum yield representation (for the TSMLT chemical mechanism) is currently being evaluated and generally in good agreement with the LUT version.
 - More J's are needed to be added to TUV-x for Hg and VSLS Halogen chemistry.
- The TUV-x photolysis heating rates have been derived and are consistent with the LUT approach.
- The TUV-x photolysis package has been successfully implemented in CESM2 WACCM6-SD. This includes the option of putting aerosols and clouds in the radiative transfer.
 - There are differences in the TCO between the TUV-x and the LUT version that needs to investigated.

> Next Step (over the next couple months)

- Examine the inclusion of aerosols and clouds in the TUX-x radiative transfer for interactive simulations (FCASE, BCASE).
- Optimize inline code to be more computationally efficient with (4-stream radiative transfer).

Extra Slide

Why did we need to "Refactor" the TUV-x Code (Matt Dawson)

- TUV-x must be configurable: To have a single codebase that recreates the functionality of the various existing instances of TUV, many hard-coded choices needed to become configuration options. The single TUV-x codebase can now recreate the results of the stand-alone TUV 5.4 as well as the version of TUV used to generate the CAM-Chem lookup table data. Configurability also leads to more code reuse (less need for copy/paste/modify approach to feature addition)
- TUV-x must be testable and tested: During the refactoring unit tests were added to ensure the smallest components of the TUV-x code continue to work correctly now and as development continues into the future. Regression testing against older versions of TUV ensures that TUV-x remains able to recreate previous results. Tests are automated and run on every PR into the TUV-x repo and include testing with and without MPI and memory checking with Valgrind. Code coverage by automated testing is at about 80%.
- Object-oriented design: The choice to move to an object-oriented design was to improve encapsulation (keeping data and functionality together; separation of concerns) and prepare for eventual porting to a modern language with better compiler support.
- Computational efficiency: For the computational cost, we have a SIParCS project in the summer to begin porting the TUV-x solver to GPUs. This will involve optimizations (e.g., multi-column solving) applicable to CPU-based solving as well.