Radiative Transfer for Energetics

RTE-RRTMGP in **CAM** implementation status

Brian Medeiros

Most of the 2023-2024 work done by Brian Eaton and Jian Sun, with previous input and help from: Isaac Davis, Courtney Peverley, Jiang Zhu, + EarthWorks SE group, & R. Pincus

AMWG, January 2024

Rapid Radiative Transfer Model - for GCMs - Parallel

What & Why of RRTMGP

- Rewrite of RRTMG (Fortran 2003)
 - plane-parallel, correlated-k, 2-stream RTM
 - uses classes to control information passing
 - no assumption of vertical ordering
 - updated spectroscopy
 - Shortwave solver: $f(\mathbf{K}_{SW}, insolation(\lambda), \alpha_{direct}, \alpha_{diffuse})$
 - Longwave solver:
 f(K_{LW}, B(λ, lev), ε_{sfc})
- Added capabilities
 - ► GPU
 - CCPP

What's involved

- Bring in RTE-RRTMGP as an external
- new interface between CAM and RTE-RRTMGP
- Mainly this is radiation.F90, but with a bunch of supporting changes:
 - rrtmgp_inputs.F90 (new, similar to rrtmg_state.F90)
 - radconstants.F90

Current status

- RTE-RRTMGP v1.7 (released 27 Nov 2023)
- RRTMGP-data v1.8 (released 27 Nov 2023)
- PR is in process
- xmlchange --append CAM_CONFIG_OPTS="-rad rrtmgp"
- COSP available
- New test simulations
 - FLTHIST: 1999-2006
 - FMTHIST: 1996-2002

interface structure all the subroutines in radiation module

radiation.F90

radiation_readnl radiation_register radiation_init radiation_define_restart radiation_write_restart radiation_read_restart

radiation_tend

>set_sw_diags >set_lw_diags >heating_rate coefs_init reset_fluxes free_optics_sw free_optics_lw free_fluxes stop_on_err

- radiation_output_sw
- radiation_output_cld
- radiation_output_lw
- initialize_rrtmgp_fluxes
- modified_cloud_fraction

mcica_subcol_gen.F90 radconstants.F90 rrtmgp_inputs.F90

radiation_tend

RRTMG, L58, LWCF (avg: 22.52)

Difference (avg: 1.50)

RRTMGP, L58, LWCF (avg: 22.69)

Difference (avg: 0.17)

0

RRTMG, L93, LWCF (avg: 22.68)

Difference (avg: 1.62)

RRTMGP, L93, LWCF (avg: 22.84)

Difference (avg: 0.16)

Performance impact derecho, 2160 pes, FLTHIST & FMTHIST

	RRTMG	RRTMGP
L58 2-year run	4232 pe-hrs/simulated_year	4263 pe-hrs/simulated_year
	12.2 simulated_years/day	12.3 simulated_years/day
	998s	1133s
L93 6-month run	8846 pe-hrs/simulated_year	9061 pe-hrs/simulated_year
	5.9 simulated_years/da	5.75 simulated_years/day
	392s	512s

• RRTMGP will be available as an option, at least

- In default configuration, there is a slight performance penalty
- Results with F*THIST compsets showing fairly modest differences,
 - but changing to RRTMGP looks like it will require some tuning
- RRTMGP already works on GPU, and CISL/EarthWorks are working to optimize it
- There is a version of RRTMGP that is CCPP-ized (probably not drop-in replacement, but something to start from)
- the lookup tables and interpolation. Examples:
 - Ukkonen & Hogan, 2023
 - Veerman et al., 2021
- transfer are more accurate (Pincus et al. 2019)

• There are efforts to optimize the calculations within RRTMGP, including using machine learning to replace

• The spectroscopy used in RRTMGP is updated, so even without other features, the clear-sky radiative