Data Assimilation studies with CESM

CESM Atmosphere/Whole Atmosphere/Chemistry-Climate Winter Working Group Meeting Wednesday, 14 February 2024

Ben Gaubert¹, W. Tang¹, I. Ortega¹, L. Emmons¹, H. M. Worden¹, Amin Mirrezaei², A. F. Arellano Jr², J. L. Anderson³, K. Raeder³, K. McKain^{4,5}, C. Granier^{6,7}

¹Atmospheric Chemistry Observations Modeling Laboratory (ACOM), NSF NCAR; ²University of Arizona; ³Computational and Information Systems Lab (CISL) NSF NCAR; ⁴CIRES, University of Colorado; ⁵Global Monitoring Laboratory, NOAA; ⁶Laboratoire d'Aérologie, Université de Toulouse, CNRS; ⁷NOAA/Chemical Sciences Laboratory, and CIRES, University of Colorado.

scientific reports

Check for updates

Data Assimilation Research Testbed (DART)

DART is a **community** and **open sourc**e software for ensemble DA.

Sequential and ensemble DA technique.

DART provides advanced **localization** and **inflation** algorithms for efficient ensemble DA.

OPEN A new CAM6 + DART reanalysis with surface forcing from CAM6 to other CESM models

Kevin Raeder^{1,4⊠}, Timothy J. Hoar^{1,4}, Mohamad El Gharamti^{1,4}, Benjamin K. Johnson^{1,4}, Nancy Collins^{1,4}, Jeffrey L. Anderson^{1,5}, Jeff Steward^{2,4} & Mick Coady^{3,5}

- Meteorological DA setup from Raeder et al. (2021): State vector: Ps, T, U, V, Q, CLOUD
 Ensemble Adjustment Kalman Filter analysis update
- Spatially and temporally varying adaptive multiplicative covariance inflation
- Spatial localization

J. L. Anderson et al., The Data Assimilation Research Testbed: A Community Facility Bulletin of the American Meteorological Society, 2009

Chemical Satellite Data Assimilation: CAM-chem/DART

CAM-chem

- CESM2.2 FV09 (0.9°x1.25° and 32 vertical layers)
- Gas phase chemistry: MOZART-TS1
- Aerosol scheme: MAM4 + VBS for SOA
- Perturbation in global aerosol and nudging parameters, initial conditions and emissions:

Daily ensemble CAMS-GLOB-ANT Gases and aerosols

Daily ensemble FINN Gases and aerosols

Step 1: Forecast step

Ensemble: 30 member perturbed CAM-chem - 6-hour forecast

Chemical data assimilation: CAM-chem/DART

2015-08-14-21600 (976 hPa

30°N

30°S

60°S

20

15

10

-15

-20

-25

Spatial localization

Chemical DA

- ✓ CO anthropogenic emissions
- ✓ CO fire emissions

Chemical data assimilation: MOPITT CO profiles

✓ Verification of CO vertical profiles with aircraft data

- ✓ Inversion reveal large underestimation
- ✓ Comparison of bottom-up and other chemical reanalyses reveal large uncertainties in emissions fluxes

Chemical data assimilation: MOPITT CO and MODIS AOD

Emission inversions: Forward simulations with posterior emissions

4 years (2015-2019) CAM-chem simulations

✓ Derived posterior emissions from 1-month inversion

✓ 10 % reduction in JO¹D (direct reduction in OH source)

Posterior simulations: Comparison with NASA ATom

Northern extratropical hemisphere

ATom-4: May 2018

- 1. Assessment of the joint assimilation of MOPITT and NOAA-20 Cross-track Infrared Sounder (CrIS) CO from Community Long-term Infrared Microwave Coupled Atmospheric Product System (CLIMCAPS)
- 2. Evaluation of Quantile-Conserving Ensemble Filter Framework (QCEFF, Anderson 2022, 2023, Monthly Weather Review)
 - An ensemble filter that deal with non Gaussian and modestly non linear distributions
 - Bounded (positive quantities) normal rank histogram (BNRH),

May 2022	ANDERSON	1061	Month 2023	ANDERSON	1
	A Quantile-Conserving Ensemble Filter Framework. Part I: Updating an Observed Variable		A Quantile-Conserving Ensemble Filter Framework. Part II: Regression of Observation Increments in a Probit and Probability Integral Transformed Space		
JEFFREY L. ANDERSON ^a ^a NCAR/CISL/TDD/DAReS, Boulder, Colorado			JEFFREY L. ANDERSON ^a ^a NCAR/CISL/TDD/DAReS, Boulder, Colorado		
(Manuscript received 30 August 2021, in final form 20 January 2022)			(Manuscript received 23 March 2023, in final form 4 July 2023, accepted 12 July 2023)		

Results: Comparison with MOPITT XCO

CLIMCAPS-CrIS and MOPITT-DA are biased to each others for tropical fires
Joint MOPITT-CrIS-DA improves CO fit to MOPITT, better than MOPITT-DA

Gaubert et al., in review, 2024

Results: Comparison with MOPITT XCO

*****BNRH improves fit to observations

RMSE vs. MOPITT-DA

Emission-driven CH4 and halogen chemistry

Gaubert et al., 2020

> Overall larger sensitivity to emission changes

Emission-driven CH4 and halogen chemistry

- 1920

1860

1800

Gaubert et al., 2020

It enables emission-driven methane simulations

Comparison of satellite products

Status: a revised version of this preprint was accepted for the journal AMT.

Advantages of assimilating multi-spectral satellite retrievals of atmospheric composition: A demonstration using MOPITT CO products

Wenfu Tang 🖂, Benjamin Gaubert, Louisa Emmons, Daniel Ziskin, Debbie Mao, David Edwards, Avelino Arellano, Kevin Raeder, Jeffrey Anderson, and Helen Worden

- (1) Assimilating multispectral/joint retrievals versus single-spectral products.
- (2) Assimilating satellite profile products versus column products.
- (3) Assimilating multispectral/joint retrievals versus assimilating individual products separately.

Data Assimilation can be used to **indirectly evaluate satellite** observations and act as a transfer functions to other datasets: surface and aircraft in-situ, ground based remote sensing, other satellite observations.

Summary

- DART/CAM-chem system for efficient ensemble assimilation of meteorology-aerosol-chemistry in a global interactive chemistry model.
- Emission updates allows for discrimination of anthropogenic and fire emission fluxes with characterization of systematic errors.
- With the addition of additional datasets, it allows to quantify the role of chemistry and emissions and further improve chemical predictions
- Evaluating impacts of different observation types: comparison of MOPITT and CrIS underlines biases between the two retrievals, but also synergies
- A novel assimilation algorithm: Bounded Normal Rank Histogram (BNRH) provides better results than the Ensemble Adjustment Kalman Filter (EAKF).
- Posterior anthropogenic emissions from BNRH, combined with halogen chemistry representation (SLH) show large improvement in background CO and will enable emission-driven CH₄ simulations

