Paleoclimate Pattern Effects and Revised Estimates of Modern-day Climate Sensitivity

Vince Cooper (vcooper@uw.edu)

Dept. of Atmospheric Sciences, University of Washington

Kyle Armour¹, Greg Hakim¹, Jessica Tierney², Natalie Burls³, Cristi Proistosescu⁴, Michelle Dvorak¹, Yue Dong⁵, Timothy Andrews⁶, Jiang Zhu⁷, Dan Amrhein⁷, Jonathan King², Matthew Osman⁸, Wenhao Dong^{9,10}, and Yi Ming¹¹

¹U of Washington, ²U of Arizona, ³George Mason, ⁴U of Illinois, ⁵CIRES (U of Colorado), ⁶Met Office, ⁷NSF-NCAR, ⁸Cambridge, ⁹CPASS/UCAR, ¹⁰NOAA/GFDL, ¹¹Boston College

Motivation: Inference of modern-day ECS

$$ECS = \frac{-F_{2xCO_2}}{\lambda_{2xCO_2}}$$

Sherwood et al. (2020), also IPCC AR6

Three lines of evidence for ECS:

- 1. Historical record (1870-present)
- 2. Process understanding
- 3. Paleoclimate
 - Pliocene (~3 million years ago)
 - Last Glacial Maximum (~21 thousand years ago)

Combine lines of evidence: Median 3.1 K (5–95%: 2.0-5.7 K)

Paleoclimate is best constraint on high values of ECS

Data from Sherwood, Webb et al. (2020)

Motivation: Inference of modern-day ECS

Pattern effect: Net feedback (λ) depends on pattern of SST anomalies

Eos article, *October 2023*: "Patterns of Surface Warming Matter for Climate Sensitivity" (Rugenstein et al. 2023)

Response of **global-mean TOA radiation** to **local SST anomalies**

Motivation: Inference of modern-day ECS

Does λ_{LGM} need an adjustment for pattern effects ($\Delta\lambda$)?

Different spatial patterns of **forcing** in modern-day 2xCO₂ vs. Paleoclimates

IPCC AR6: $\Delta T = -6.0 + 1.0 \circ C$

Effective Radiative Forcing (ERF) in AGCMs, Normalized by global mean

Modern-day 2xCO₂

Last Glacial Maximum (19–23 kya)

Zhu & Poulsen Poulsen (2021)(2021), CESM1.2 CESM1.2 $\Delta ERF / |\Delta ERF|$ $[Wm^{-2}/Wm^{-2}]$

GHG forcing + Localized forcing:

Zhu 8

- Ice sheets + sea level
- Not shown: vegetation, dust/aerosols

GHG forcing + Localized forcing: Michelle Dvorak et al. (in prep), CESM2.1

IPCC AR6: ΔT range 2.5–4.0 °*C*

Pliocene

("mid-Pliocene warm period" ~3 million ya)

- Ice sheets + sea level
- Vegetation
- Not shown: dust/aerosols

Different forcings produce different SST patterns

Annan et al. (submitted)

SST patterns from **paleoclimate data assimilation**: Combination of model covariance and proxy data

 Proxy information is spread across state estimate

 Update is weighted by uncertainty in model prior and proxies

Methods: Feedbacks in atmosphere models (AGCMs)

3 required simulations: SST/sea ice prescribed in AGCMs ("AMIP" style with constant forcing)

 Amrhein et al. (2018), Tierney et al.
 (2020), Osman et al. (2021), Annan et al. (2022)

Pliocene (2 reconstructions):

Tierney et al. (*in prep*) and Annan et al. (*submitted*)

Preliminary Results: Feedbacks in AGCMs

Note: consistent results found in GFDL AM4 and HadGEM3

Mechanism: Positive SW cloud feedbacks caused by non-CO₂ forcings

- Zhu & Poulsen (2021) and Amaya et al. (2021) in CESM1.2:
 LGM pattern caused by non-CO₂ forcing
- Dvorak et al. (in prep) CESM2: Pliocene pattern caused by non-CO₂ forcing
 - Also Feng et al. (2022), focused on hydroclimate

Preliminary Results:

Paleoclimates provide stronger constraints on modern-day ECS

Preliminary Conclusions:

Paleo pattern effects help constrain ECS

"Last Glacial Maximum pattern effects..." preprint: https://doi.org/10.31223/X5VD56

Feedback is more negative in 2xCO₂ than LGM & Pliocene:

Pattern effect: $\Delta \lambda = \lambda_{2xCO_2} - \lambda_{Paleo}$

- $\Delta \lambda$ driven by differences in **cloud feedbacks**
 - Caused by non-CO₂ paleo forcings

Paleo pattern effects help constrain modern-day ECS

Combined lines of evidence

- Sherwood et al. (2020), updated paleo ΔT
- Including Pliocene $\Delta \lambda$
- Including Pliocene $\Delta \lambda \& LGM \Delta \lambda$

Median (5–95%) Unif. λ prior 3.3 K (2.4–**5.1 K**) 3.1 K (2.3–**4.7 K**) 2.8 K (2.1–**4.0 K**)

Appendix

Pliocene vegetation (IPCC AR6)

(b) Changes in vegetation from the Piacenzian to present day

Sherwood et al. (2020) equations for Pliocene

$$\Delta T = \frac{-\Delta F_{\rm CO2} \left(1 + f_{\rm CH4}\right) \left(1 + f_{\rm ESS}\right)}{\frac{\lambda}{\left(1 + \zeta\right)}}$$

Table 8Parameters of the Distributions That Are UsmPWP, Equation 23	sed to Estimate S From the
Term	Distribution
$\Delta T (K)$ $CO_2 (ppm)$ $\Delta F_{2xCO2} (W m^{-2})$ f_{CH4} f_{ESS} ζ	N(3, 1) N(375, 25) N(4.0, 0.3) N(0.4, 0.1) N(0.5, 0.25) N(0.06, 0.2)

Note. Radiative forcing per CO_2 doubling from section 3.2.1.

$$\Delta T = \frac{-(-0.57 \Delta F_{2xCO2} + \Delta F')}{\frac{\lambda}{1+\zeta} + \frac{\alpha}{2} \Delta T},$$

Table 7Parameters of the Distributions That Are Used to Estimate S From the ColdClimate States, Equation 22

Term	Distribution
$\Delta T (K)$	N(-5, 1)
$\Delta F_{2xCO2} (W m^{-2})$	N(4.0, 0.3)
$\Delta F' (W m^{-2})$	N(-6.15, 2)
α	N(0.1, 0.1)
ζ	N(0.06, 0.2)

Note. Radiative forcing per CO_2 doubling from section 3.2.1.

What did Sherwood, Webb, et al. (2020) do for the LGM?

 Estimate *observed LGM feedback

$$\lambda_{\rm LGM}^* = -\frac{\Delta F_{\rm ice} + \Delta F_{\rm CO_2} + \Delta F_{\rm CH_4, N_2O} + \Delta F_{\rm dust} + \Delta F_{\rm veg}}{\Delta T}$$

$$\lambda_{\text{LGM}}^* = -\frac{-3.2_{\text{ice}} - 2.3_{\text{CO}_2} - 0.8_{\text{CH}_4, \text{N}_2\text{O}} - 1.0_{\text{dust}} - 1.1_{\text{veg}} \text{Wm}^{-2}}{-5 \text{ K}}$$

$$\lambda_{\text{LGM}}^* = -\frac{-8.4 \text{ Wm}^{-2}}{-5 \text{ K}} = -1.7 \text{ Wm}^{-2} \text{K}^{-1}$$

Accounting for pattern effect in estimates of ECS for the LGM

Historical Record

Last Glacial Maximum (LGM)

 $ECS = \frac{-\Delta F_{2xCO_2}}{\lambda_1^* + \Delta \lambda_2}$

"Naive ECS" from ***Observations**

$$ECS = \frac{-\Delta F_{2xCO_2}}{\lambda_{\text{Hist}}^*}$$

Pattern Effect from models

 $\Delta\lambda_{pattern} = \lambda_{2xCO_2} - \lambda_{Hist}$

"Revised ECS" accounting for pattern effect

$$ECS = \frac{-\Delta F_{2xCO_2}}{\lambda_{\text{Hist}}^* + \Delta \lambda_{\text{pattern}}}$$

$$\frac{\text{Research}}{\text{Question}} \Delta \lambda_{\text{pattern}} = \lambda_{2\text{x}CO_2} - \lambda_{\text{LGM}}$$

$$\frac{\text{Research}}{\text{Question}}$$

$$ECS = \frac{-\Delta F_{2\text{x}CO_2}}{\lambda_{\text{LGM}}^* + \Delta \lambda_{\text{Temp.}} + \Delta \lambda_{\text{pattern}}}$$

Pattern effect: Net feedback (λ) depends on pattern of SST anomalies

Ascent vs. descent regions explain pattern effect

...But DA results have substantial disagreements in LGM patterns

Patterns of SST anomalies relative to preindustrial/late Holocene

...But DA results have substantial disagreements in LGM patterns

Sea ice concentrations add to uncertainty

Sea ice concentration (SIC) anomalies relative to late Holocene

Results: Pattern effect from DA in atmosphere models (AGCMs)

SST response to LGM ice sheets: amplified in NH extratropics

Mechanism: Feedback decomposition of our AGCM experiments

1) SST response to LGM ice sheets is amplified in NH extratropics

2) Big difference in SW cloud feedbacks

 $\Delta \lambda = \lambda_{2x} - \lambda_{LGM}$

Attributing the pattern effect to specific feedbacks

Mechanism: SST "patterns" vs. global-mean temperature impact on $\Delta\lambda$

Mechanism: Stationary Wave Response

- Winter: topography slows down the poleward flank of westerlies, and the equatorward flank accelerates (equatorward shift + stronger jet, and deeper Aleutian low)
- Summer: albedo essential for surface cyclonic circulation, and ocean provides persistence
- Winter topography and summer albedo have same directional contribution to stationary wave response

Fig. 9. Schematic summary of the North Pacific coupled climate response to tall/bright North American ice sheets during the LGM. (1) A direct stationary wave response to the tall/bright ice sheets during boreal summer produces a low-level cyclonic circulation over the North Pacific. These circulation anomalies drive cold air advection in the western North Pacific and increased water vapor transport in the eastern North Pacific. (2) Enhanced stability coupled with increased atmospheric moisture leads to more marine stratocumulus clouds, which reflect sunlight and cool the North Pacific Ocean near ~40°N. (3) Low cloud-SST feedback and ocean dynamical adjustments amplify the SST and cloud changes, persisting them into boreal winter. (4) The enhanced North Pacific meritional temperature gradient accelerates the westerlies on the equatorward flank of the jet stream, while mechanical interactions with ice sheet topography decelerate the flow on the poleward flank. Overall, this leads to a southward shift of the North Pacific jet stream and a redistribution of North American west coast hydroclimate during the LGM.

Annan Posterior Ensemble Members with Strong Negative LGM Feedback

Bootstrapping (n=19)

- CESM1.0.4
- CNRM CM6.1
- HadCM3L
- MPI ESM 1.2
- MIROC 3.2
- GFDL ESM2M

LGMR

• LGMR

- We focus on geochemical proxies for SST including alkenone U37 K' (146 records), the TetraEther indeX of 86 carbons (TEX86; 28 records), the elemental ratio of Mg to Ca in planktic foraminifera (Mg/Ca; 129 records), and the oxygen isotopic composition of planktic foraminifera (δ18 Oc; 270 records)
- No terrestrial data were included in the data set compiled, and few data are available for the central Pacific, Indian and Southern oceans, leaving some questions as to how accurate the reconstruction is across these large expanses of water and continents.
- Reduced proxies relative to IgmDA, because they only use timeseries
- Prior spread comes from...

Age (ka)	Model description	Number of priors	Greenhouse gas (CO ₂ /CH ₄ /N ₂ O)	Global $\delta^{18}O_{sw}$	GMST range (°C)	Citation
0	iCESM1.2: PI	16	285 / 792 / 276	0.05	14.03-14.25	10
0	iCESM1.2: PI	10	285 / 792 / 276	0.05	13.22-13.33	61
0	iCESM1.3: PI	10	285 / 792 / 276	0.05	13.68-13.84	61
0	iCESM1.2 Last Millennium Member #2: 850-1850 CE	20	Transient	0.05	12.96-13.26	62
0	iCESM1.2 Last Millennium Member #3: 850-1850 CE	20	Transient	0.05	12.98–13.27	62
3	iCESM1.2: 3 ka	16	275 / 580 / 270	0.05	13.99-14.14	10
6	iCESM1.2: 6 ka w/	16	264 / 597 / 262	0.05	14.14-14.62	This study
	Sahara & 50–90 % greened					
6	iCESM1.2: 6 ka	8	264 / 597 / 262	0.05	14.03-14.19	This study
9	iCESM1.2: 9 ka w/	16	260 / 659 / 255	0.34	13.87-14.09	This study
	Sahara greened					
12	iCESM1.2: 12 ka	16	253 / 478 / 236	0.59	12.61-12.76	This study
12	iCESM1.2: 12 ka w/	4	253 / 478 / 236	0.59	10.79–11.77	This study
	freshwater over N. Atl.					
14	iCESM1.2: 14 ka	16	238 / 637 / 255	0.73	10.05-10.32	This study
16	iCESM1.2: 16 ka	16	224 / 452 / 199	0.90	9.27-9.45	This study
16	iCESM1.2: 16 ka w/	4	224 / 452 / 199	0.90	7.63-8.45	This study
	freshwater over N. Atl.					
18	iCESM1.2: 18 ka	16	190 / 370 / 245	1.02	8.00-8.13	10
21	iCESM1.2: 21 ka	16	190 / 375 / 200	1.05	7.41–7.87	10
21	iCESM1.3: 21 ka	18	190 / 375 / 200	1.05	6.40-7.37	61

Greenhouse gas concentrations are in ppm for CO₂ and ppb for CH₄ and N₂O. Global mean seawater δ¹⁶O (δ¹¹⁰O₁₀) is in ‰ relative to the Vienna Standard Mean Ocean Water (VSMOW). See Methods for details of the implementation of vegetation and freshwater forcing in related simulations.

lgmDA

- IgmDA v2.1
 - Our data collection consists of 956 LGM (23–19 kyr ago, ka) and 879 late Holocene (4–0 ka) SST proxies
 - 636 and 664 unique locations
 - Lots of proxies which can go into iCESM, building on MARGO but not actually using all of MARGO data
- Prior is "50 yr average states from simulations of glacial state"

Amrhein

- Amrhein
 - Fit MITgcm ocean model to MARGO (2009) SST data within uncertainties using least-squares with Lagrange multipliers

1 2 3 4 5 6 7 8 9 10 11

Number of records

2 3 Number of proxies

Annan

Why doesn't the surface albedo feedback make cold climate more sensitive?

Cloud feedback spread across patterns and models

LR+WV Feedbacks

LGM Supplement

Fig. S4. Uncertainty tests for modern-day climate sensitivity including LGM pattern effects.

LGM Supplement

Fig. S7. Spatial decomposition of Last Glacial Maximum (LGM) and 2xCO₂ local climate feedbacks in atmospheric general circulation models (AGCMs).