

Evaluating Water Isotope Tracers in the Variable -Resolution Community Earth System Model using USNIP (US Network for Isotopes in Precipitation)

Sophia Macarewich ¹, Jeffrey M Welker^{2,3}, Jiang Zhu¹, Jesse Nusbaumer¹, Adam Herrington¹, Rich Fiorella^{4,5}, Shaakir Shabir Dai³, Bette L Otto-Bliesner¹, and Esther Brady¹

¹National Center for Atmospheric Research; ²Univ. of Alaska; ³Univ. of Oulu; ⁴Los Alamos National Laboratory; ⁵New Mexico Consortium

FEBRUARY 26, 2024

Variable - res captures global climate & complex regional terrain at a low cost

Sophia Macarewich (macarew@ucar.edu)

Operated by UCAR

Maps modified from: Herrington et al. (2022), JAMES Rhoades et al. (2016), JAMC

USNIP: 25 years of precipitation isotopic compositions across the US

USNIP includes weekly observations from 1989–2014 of precipitation δ^{18} O and δ D at 73 sites over contiguous US, which can be used to:

- 1) Quantify the spatial-temporal variability in precipitation isotopes across contrasting climate zones
- 1) Validate (high-resolution) isotopeenabled climate models over the contiguous US

Jeff Welker Shaakir Dar *Univ. Alaska, Univ. Oulu*

Case Study: precipitation isotopes over the contiguous US from 1990 -2015

• T, U, Vnudged to MERRA2 reanalysis

Jiang Zhu NCAR Jesse Nusbaumer Adam Herrington Bette Otto-Bliesner Esther Brady

Case Study: precipitation isotopes over the contiguous US from 1990 -2015

- Two iCAM6-CLM5 simulations over the 1990-2015 historical period
- T, U, V nudged to MERRA2 reanalysis
- ~1° simulation contains process-oriented water tags that track:
 - Rayleigh rainout effect
 - $\circ~$ Evaporative source $\delta^{18}O$ and RH
 - \circ Condensation T
 - Mean evaporation source location

Community Earth System Model 2

Community

Atmosphere Model v6

5

SE-

dycore

Data-model comparison of precipitation

US Network of Isotopes in Precipitation (USNIP)

Model validation

- Where & why do simulated isotopic variations capture observations?
- Where does the higher grid resolution fit the data better?

Controlling conditions

 What are the dominant drivers of monthly-mean isotopic variation over the US?

isotope -enabled Community Earth System Model

Grid refinement over US provides overall improvement in precipitation amount

7

Overview of spatiotemporal variability in precipitation δ^{18} O over US

more rainout = lower precipitation $\delta^{18}O$

Lo-res grid

Hi-res grid

more spatial-temporal variability with hi-res

δ¹⁸Op (‰)

iCAM6-USNIP δ^{18} Op is best in continental interior and worst along the coast

- Simulations capture monthly precipitation δ¹⁸O similarly, with some improvement in US interior with hi-res
- E.g., in the South, iCAM6 predicts lower δ¹⁸Op than USNIP that is not improved with hi-res

Precipitation δ^{-18} O bias in coastal regions may be due to evaporative source conditions

- Typically in coastal regions (e.g., South), T is high and rainout is low, so initial evaporative conditions become important
- Improving representation of model $\delta^{18}O_{seawater}$ (only 1° resolution) may improve coastal precipitation $\delta^{18}O$

iCAM6 water tags: Fiorella et al. (2021), JAMES 10

variability with hi-res

Regional grid refinement in iCAM6 improves d - excess across the US

 Overall, data-model fit for precipitation d - excess is lower than δ¹⁸O, but substantially improves with hi-res

Precipitation d -excess controlled by rainout fraction and source conditions

Evaporative source conditions particularly important in coastal regions and southeast

Sophia Macarewich (macarew@ucar.edu)

iCAM6 water tags: Fiorella et al. (2021), JAMES 13

Amount-weighted annual mean evaporation source

Preliminary lessons for VR paleo applications from US case study

- Using process-oriented tags in a global low-resolution simulation is a great first step to learn about primary isotopic controls in your region of interest
- For VR-iCESM, in the region of grid refinement...
 - For prescribed sea surface, incorporate finer-scale seawater δ¹⁸O based on high-res simulation or available proxy data→best results for coastal precip δ¹⁸O
 - Including important evaporative source regions→best results for precip d-*excess*

Preliminary Conclusions & Future Directions

- Variable-resolution iCESM is a powerful & cost effective approach for:
 - Providing insight into the controlling conditions of observed isotopic variation
 - Evaluating isotopic models at fine spatial scales closer to observations (e.g., USNIP)
- Hi-res provides improvements in dexcess over CONUS & precip amount over western US
- Future plans include using VR-iCESM for paleoclimate applications (i.e., Last Deglaciation)

Extra Slide

