Towards a new vertical coordinate to optimally resolve ocean
mesoscale eddy dynamics in high-resolution models
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Motivation: capturing mesoscale dynamics in high-resolution models

- To accurately capture the dynamics, the vertical must be sufficiently resolved.
Evidence of insufficient resolution can be seen in:

- 'Roll off” in QG horizontal turbulent spectra with lower vertical resolution
- Sensitivities in MOM6 energetics depending on the choice of vertical grid
- As horizontal resolution of models increases, there is a corresponding
demand on the vertical grid resolution

- Make the most effective use of vertical layers by placing them strategically

- Stewart et al,, 2017 argue the importance of resolving the baroclinic modes
which become relevant at finer meso- and submesoscales

- Proposed geopotential grid with 50 well-positioned layers for the first
baroclinic mode and additional 25 for each subsequent mode



Motivation: capturing mesoscale dynamics in high-resolution models

- Investigate a promising vertical grid and compare representation of
energetics in an idealized quasi-geostrophic (QG) regime. The grid is designed
with an eye toward adapting it for use in primitive equation (PE) ocean models.



Proposed vertical coordinate



Defining an alpha coordinate: between geopotential and isopycnal
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Constructing the grid

-1 ] - Define a fixed idealized stratification that
reflects realistic profiles

- For any grid, the layers must be specified in
5] ] a coordinate

Depth [km]

- a = 1we use equispaced points for the
layers; the coordinate itself does the heavy
lifting
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Brief description of vertical grids

MOMS6 grid Stewart grid OM4 Isopycnal grid  Alpha-coordinate grid
62 Layers 61 Layers 26 Layers 40 Layers

- a=1(20,40,60)

——— - Stewart (65)
1 ] =——"" (Stewart et al, 2017)

“ - MOM6 (65)
0o (Marques et al., 2023)
i | | [———1+ OM4&isopycnal / hybrid grid (75)

(Adcroft et al,, 2019)
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Baroclinic modes reflect increasing vertical complexity
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Modes rapidly approach modulated cosines under o = 1 coordinate




a = 1grid is well-suited to capture mode oscillations
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Energy cascade mediated by modal interaction coefficients
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(Smith and Vallis, 2001)

The strength of interactions between
vertical modes is controlled by a triple
interaction coefficient,

eﬁmn :/¢Z¢m¢nd2
— Zhi¢é,i¢m,i¢n,i

The shape of the baroclinic modes,
{ém}, directly impacts the accuracy of
the interactions and thus the energy
pathways and cascade
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QG interaction coefficients; consistent with accurate o = 1 baroclinic modes
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QG interaction coefficients; consistent with accurate o = 1 baroclinic modes
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Dynamics: studying energetic
behavior in nonlinear QG simulations



Simulation domain and setup

Fully nonlinear QG simulations
. .. 2048 km ]
- Domain is periodic 5-plane; flat, 2048 km 8 km resolution

rigid top and bottom 52 km

- Fix background zonal velocity, t(z)

- Baroclinic instabilities drive the
turbulence in the modeled
perturbation fields, ¢’ ¥'(x,y, z,t)
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Interior baroclinic instability excites a range of modes
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Interior baroclinic instability excites a range of modes
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Interior baroclinic instability excites a range of modes
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Look at turbulent statistics after spin up (every 25 days over 20 years)
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Cross section snapshots: MOM6 grid
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Cross section snapshots: Stewart grid
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Cross section snapshots: a = 1 grid with 60 layers
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Cross section snapshot

a =1 grid with 40 layers
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Diverging energetics across grids
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Diverging energetics across grids
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Heuristic behavior and theory suggest a = 1 grid promising for mesoscale dy-

namics

- Equispaced a = 1 grids provide a new, easily-computable means to efficiently
resolve baroclinic modes
- Straightforward definition of grid that can easily scale number of layers
- Near optimal resolution of baroclinic modes out to the highest order
- Adapts locally to stratification, which requires fewer layers globally to resolve
modes than a geopotential grid

- Recreating energetic sensitivities in QG case study

- Convergence behavior can help us understand what the right answer might
be within the variation displayed by grids

- Comparisons provide growing insight into the role of the vertical grid and
resolution and the impact on the dynamics
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