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How do we model air-sea interaction in higher-resolution models?

We need to provide non-local, i.e. not-equilibrated
Waves in Earth System Model

Grid box of an earth system model

Boundary layer

Atmosphere

Waves Sea lce

Mixed layer

momentum heat gases

Ocean
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A framework for
coupled boundary layers

<«

Explicit, and efficient
modeling of surface waves

Why do we need waves in ESM today?

 Waves in the MIZ
« Stokes, Langmuir, and MLD

« White capping, sea spray, and gas fluxes
» \WWave-current interaction (< 20 km)

* Dbetter use remote-sensing data
* enable ML-based parametrization
* Dpetter represent processes at the

iINnterface



Why can we not use a fully spectral wave model?
Directional wave spectra at Ocean Station Papa

Wave buoy observation Typical wave observations
-30° 30° e \Wind sea & 1-3 Swell fields
e Each of these wave partition have a
60" 60° direction, peak frequency, and energy
" ‘ * The total wave spectrum can be

. \18.3s approximated by 9 variables

90°

Spectral wave model (WW3)

" e discretize the wave action in
' 120° frequency and direction

e needs about 600 variables to
describe nearly the same information
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Spectral models are too expensive for global high-resolution integrations

Spectral Models in ESMs

Large state vector (~600)
coupling has likely large overhead
S, is expensive

WaveWatch lll resolution in CESM is
currently reduced to 3°
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t would be good to understanding the
pbottlenecks of WW3 in CESM a little

petter!



2nd generation+ wave model

PICLES

« Solves the wave field along Lagrangien trajectories (particles) that
are re-meshed periodically

e Each particle is a representative sample for wave energy &

[ [ @
momentum of wave system (0,2) (1,2 (2.2)
Particle
. L (1,1)
Main Objective:
dx = DT ¢,
Trade accuracy for speed and convenience!
Node
» Find alternative to reduce the high-dimensionality to 1) un @)
iImprove efficiency
> Describe sufficiently accurate surface statistics for
air-sea interaction in Earth System Models.
Key requirements
10,0 .0 ©, 0

> Minimize particle interaction
> Designed to be parallel on GPUs

> Written in juli.é

> Focus on open-ocean waves
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Equations to solve along a trajectory

Conservation of wave action:

0 o . D SE
oty T oz @GN+ g ra

* neglecting currents
e integrating in (2D) wavenumber space
« forming equations for the total energy and momentum (Kudryavtsev et al. 2021)

Then we can write down the particle equations:

parameterized wave-wave interaction

Similar to WW3
Particle Equations
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* Wave-wave interaction along the trajectory is parametrized

e \Wave-wave interaction normal to the particle trajectory are
often small and modeled in the re-meshing step



Advance and re-mesh

Lagrangian wave growth + Particle-in-Cell = PiCLES
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Particle
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Node
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Model cycle

deformed particle state
spitDT= [ In(energy), Cx, Cy, X, Y |

map and
add to node Advance ODE
system by ocean
+ So=Gilso) timestep

field values at node map to particle partlcle state at node

sn= [ Energy, myx, my | sp—G (sn) = [ In(energy), cx, Cy, X, Y ]

N "

AL * re-meshing conserves energy

e = WnMp, and momentum

n
- / Particle-In-Cell weights

o — WG s
n



Accuracy: Comparing to WW3

The general model structure works well, but
e dispersion and diffusion not yet implemented
e amplitudes are not tuning yet. We will use Ensemble

Kalman Sampling
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DT=1800.0, dx=333.0, CFL= NaN,
time=45 minutes
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Time-varying wind sea



Propagating swell
How”? We take the model x 4!

wind direction . ,
0.2 .2 ©.2) f

/.
Particle

(1,1) "
1st swell / / /
- Node. o 1
0,1) (1,1) (2,1)
Each node has multiple particles o
Wind sea: 1 x 5 energy, cg_x, cg_yV, X, y

—~@

Swelll: 1x5

Swell ll: 1 x5 energy, cg_x, cg_y, X, Y, + age or travel time

Swell lll: 1 x 5 energy, cg_x, cg_y, X, Y, + age or travel time .
20 ?
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Strong Scaling Test
Sub-optimal PICLES might be sufficient
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[GB]

Memory used [GB]
Compiling + time stepping
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Strong scaling for ~ 0.7° (N = 512
on 1 derecho Node

PiCLES

e Currently only multithreading

e about 10x faster,

e 3-4x more allocating, but less throughput

WW3
e openMP]

e Scales, and allocated well for the size of
the state vector.

e about 120x more variables.
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Weak Scaling Tests - Out-running WW3
A semi-interactive wave model is substantially more efficient for future Earth System Models

Spectral Models in ESMs

e large state vector (~600)
e coupling has likely large overhead
e S, is expensive

o WaveWatch Il resolution in CESM is
currently reduced to 3°

PiCLES:
e small state vector (about 5 - 20,
depending on complexity)

e runs on the ocean grid and time step
(no strict CFL condition)

e can be well optimized for GPUs

o for CMIP6-class models, we expect it
at least run about an order of
magnitude faster then WW3
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« current PICLES is O(10) faster then
WW3 without overhead and coupling

. PICLES is about O(10%) faster then
WW3 with overhead and coupling

e Once allocation is optimized, we expect
PiCLES to scale better than N log(N)

e % We can already run wind-sea
simulation on 10km resolution on 1 Node

It would be good to understanding the
bottlenecks of WW3 in CESM a little
better!
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Implementation into CESM

Fortran/C coupler for Julia

e Thanks to Bill Sacks and Gerhard Theurich we have a
minimal working example for Fortran -> C -> Julia

* \We work on getting internal funding (NCAR) to develop a
Julia (PICLES) <-> fortran (NuOPC-CAP)

Cap & Coupling with CESM

o Unify implementation of wave-model in CESM

e see Paul Hall presentation and wave-cap discussion later in
this session
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Steps towards a stand-alone wave model

Challenges
1) Determine time stepping limits

)
) Tuning/benchmarking

) Emulating dispersion, diffusion, and refraction
)

)

B W N

Multi-layer & Merging rules
Optimize allocations

Ol

Stochastic wave-current interaction
PhD project of Tom Protin at Ifremer

(co-mentoring with Valentin Resseguier, Bertrand
Chapron, and Ronan Fablet)
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Test of wave growth under time-varying Forcing

Growing waves in 1D
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Qualitatively reproduces
Hell et al 2021

e highest wave speeds and
energy ahead of the high-
test wind speeds

e non-local effects under
wave-growth conditions
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Problem Illl: how to merge and how to
separate between swell and wind sea?

1 )/. o /
2.2

2 T2
/ Particle
(1,1)
/ dx = DT ¢,
Node -

A O%) (R 20 ¢
//.

©0 0 2, 0) ¢
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25 7 * Merging/re-gridding should conserve

energy and momentum, but on the
20 same time not double count energy.

* wave growth is the result of the (5%)
residual of wind energy input and
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Test Case I: Static Fetch

Reproducing 2nd generation models

The model gqualitatively reproduces the fetch relation well
® Numerical diffusion needs tuning of wave growth ana

dissipation

® \Ve plan to calibrate using Ensemble Kalman Inversion
(Calibrate, Emulate, Sample, Cleary et al. 2020)
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PiCLES: Dynamic Fetch

Growing waves under a moving fetch
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wind direction

Qualitatively reproduces results from Hell et al 2021:

* highest wave speeds and energy ahead of the high-test
wind speeds.

* non-local effects under wave-growth conditions
* frequency and geometric dispersion not included yet.
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2D wave spectrum, wind Sea and swell
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